解:设个位数字为x,则十位数字为14-x,两数字之积为x(14-x),两个数字交换位置后的新两位数为10x+(14-x).根据题意,得10x+(14-x)-x(14-x)=38.整理,得x2-5x-24=0,解得x1=8,x2=-3.因为个位数上的数字不可能是负数,所以x=-3应舍去.当x=8时,14-x=6.所以这个两位数是68.方法总结:(1)数字排列问题常采用间接设未知数的方法求解.(2)注意数字只有0,1,2,3,4,5,6,7,8,9这10个,且最高位上的数字不能为0,而其他如分数、负数根不符合实际意义,必须舍去.三、板书设计几何问题及数字问题几何问题面积问题动点问题数字问题经历分析具体问题中的数量关系,建立方程模型解决问题的过程,认识方程模型的重要性.通过列方程解应用题,进一步提高逻辑思维能力和分析问题、解决问题的能力.经历探索过程,培养合作学习的意识.体会数学与实际生活的联系,进一步感知方程的应用价值.
5.一件上衣原价每件500元,第一次降价后,销售甚慢,第二次大幅度降价的百分率是第一次的2 倍,结果以每件240元的价格迅速出售,求每次降价的百分率是多少?6.水果店花1500元进了一批水果,按50%的利润定价,无人购买.决定打折出售,但仍无人购买,结果又一次打折后才售完.经结算,这批水果共盈利500元.若两次打折相同,每次打了几折?(精确到0.1折)7.某服装厂为学校艺术团生产一批演出服,总成本3000元,售价每套30元.有24名家庭贫困学生免费供应.经核算,这24套演出服的成本正好是原定生产这批演出服的利润.这批演出服共生产了多少套?8、某商店经营T恤衫,已知成批购进时单价是2.5元。根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售200件。请你帮助分析,销售单价是多少时 ,可以获利9100元?
三、课后自测:1、如图,A、B、C、D为矩形的四个顶点,AB=16cm,BC= 6cm,动点P、 Q分别从点A、C出发,点P以3cm/s的速度向点B移动,一直到达B为止;点Q以2cm/s的速度向点D移动。经过多长时间P、Q两点之间的距离是10cm?2、如图,在Rt △ABC中,AB=BC=12cm,点D从点A开始沿边AB以2cm/s的速度向点B移动,移 动过程中始终保持DE∥BC,DF∥AC,问点D出发几秒后四边形DFCE的面积为20cm2?3、如图所示,人民海关缉私巡逻艇在东海海域执行巡逻任务时,发现在其所处的位置 O点的正北方向10海里外的A点有一涉嫌走私船只正以24海里/时的速度向正东方向航行,为迅速实施检查,巡逻艇调整好航向,以26海里/时的速度追赶。在涉嫌船只不改变航向和航速的前提下,问需要几小时才 能追上( 点B为追上时的位置)?
5.一件上衣原价每件500元,第一次降价后,销售甚慢,第二次大幅度降价的百分率是第一次的2 倍,结果以每件240元的价格迅速出售,求每次降价的百分率是多少?6.水果店花1500元进了一批水果,按50%的利润定价,无人购买.决定打折出售,但仍无人购买,结果又一次打折后才售完.经结算,这批水果共盈利500元.若两次打折相同,每次打了几折?(精确到0.1折)7.某服装厂为学校艺术团生产一批演出服,总成本3000元,售价每套30元.有24名家庭贫困学生免费供应.经核算,这24套演出服的成本正好是原定生产这批演出服的利润.这批演出服共生产了多少套?8、某商店经营T恤衫,已知成批购进时单价是2.5元。根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售200件。请你帮助分析,销售单价是多少时 ,可以获利9100元?
(三)解民需暖民心,用心办好民生实事。抓牢兜牢社会保障。坚持以人为本,注重做好民生保障,加大特困供养、城乡低保、大病救助等民生政策落实力度,扩大社会救助范围,保障低收入群体基本生活。突出低收入群体动态监测和预警,着力提升临时救助精准服务水平。加强退役军人服务保障工作,全面落实优抚、安置等政策。提质发展社会事业。继续开展文化惠民工程,扩大基层文艺演出覆盖面。发挥新时代文明实践站(所)作用,免费开放图书室等场所,满足群众的精神文化生活需求。加强公民道德和精神文明建设,组织开展道德模范评选表彰活动,深入推进移风易俗,弘扬传统美德,进一步打造文明乡村。(四)强治理保稳定,有力保障稳定大局。全方位保障人民安全。广泛宣传贯彻关于安全生产“十五条硬措施”,常态化开展安全生产大排查大整治专项行动,坚决防止重特大安全事故发生。强化自然灾害预警处置,优化应急物资储备。
二是问题整改再夯责。扎实推进各级各类反馈问题整改,切实扛起问题整改政治责任,细化整改措施,全力加快问题整改。全力完成“五乱”问题整改销号任务,建立健全“五个一”长效机制,对“五乱”问题实行零容忍,坚决扭住不放,露头就打。三是生态价值再深化。按照省市生态产品价值实现机制试点工作总体安排部署,依据《32条措施》和《重点工作任务清单》,积极谋划好全县生态产品价值实现机制试点路径,推动“我在秦岭有宝”微信小程序上线,持续开展绿色创建活动,不断挖掘提炼我县生态产品价值实现典型案例。四是督查检查再发力。要始终保持零容忍的高压态势,严格按照“双查”“快查快处”工作机制,常态化打击秦岭“五乱”行为。不定期开展明察暗访和专项督查倒逼任务落地落实,严肃查处秦岭生态环境保护问题线索,切实发挥考核“指挥棒”作用,不断加大秦岭生态环境保护领域监督执纪问责力度,切实营造风清气正的秦岭生态环境保护工作氛围。
二是问题整改再夯责。扎实推进各级各类反馈问题整改,切实扛起问题整改政治责任,细化整改措施,全力加快问题整改。全力完成“五乱”问题整改销号任务,建立健全“五个一”长效机制,对“五乱”问题实行零容忍,坚决扭住不放,露头就打。三是生态价值再深化。按照省市生态产品价值实现机制试点工作总体安排部署,依据《32条措施》和《重点工作任务清单》,积极谋划好全县生态产品价值实现机制试点路径,推动“我在秦岭有宝”微信小程序上线,持续开展绿色创建活动,不断挖掘提炼我县生态产品价值实现典型案例。四是督查检查再发力。要始终保持零容忍的高压态势,严格按照“双查”“快查快处”工作机制,常态化打击秦岭“五乱”行为。不定期开展明察暗访和专项督查倒逼任务落地落实,严肃查处秦岭生态环境保护问题线索,切实发挥考核“指挥棒”作用,不断加大秦岭生态环境保护领域监督执纪问责力度,切实营造风清气正的秦岭生态环境保护工作氛围。
(二)持续提升网办能力。全面推行政务服务事项“网上可办”“全程网办”“掌上办”“指尖办”“自助办”。狠抓落实“一网通办”各项数据指标提升工作,努力保持“一网通办”工作成绩在全市第一梯队。(三)推进综窗改革。严格按照“应进必进”原则,完成14个部门集中进驻并授权到位,已进驻部门完成自查“明进暗不进”,确保事项全部进驻并授权到位;同步推动“一窗受理”到位,7月底前,“分领域专区综合窗口”逐步推动业务整合,科学整合压缩窗口,削减行政成本,全面实施“集成服务”。“无差别综合窗口”根据我县实际情况,推进落实综窗接件人员到位,完成除9个分领域外的其它所有事项整合进驻无差别综窗,由政务服务中心综窗接件、统一推送、内部流转至部门审批、再综窗出件,扭转办件量少的部门也需派驻人员的财政经费浪费,实现效率集成、成本压缩。
5.强化项目招引,追踪摸排新项目。紧盯重大项目,实行招商项目清单管理,落实专人跟进,对项目洽谈、重点签约项目、推动项目落地等实行交办督办;促签约促落地,按照投资促进领导小组会议和招商引资专题会上确定的任务分工,继续盯紧已签订框架协议和预审批项目,一项一项按照责任分工和时间节点跟踪,消号管理,定期报送项目进度;不断追踪、抓紧摸排梳理可支撑新项目,包括加大总部项目培育力度。面对有一定可能性、可行性的招引项目以及总部经济项目,要不断沟通对接、全力追踪推进,形成源源不断的项目库,为XX的高质量招商引资工作提供强有力支撑。6.优化政策机制,建立科学新体系。在已经出台的市、县两级招商引资、总部经济相关政策及机制基础上,根据我县实际再进一步完善修订相应的招商引资、总部经济优惠政策及认定机制,根据不同产业、行业特点,确定各类项目认定标准,建立起科学合理的新体系,进一步促招商引资项目、总部经济项目签约及落地。
(二)机遇难得。一是发展后劲持续增强。市委、市政府对水务集团发展更加关注,在新建污水处理厂、全市排水资源整合等方面给予大力支持,集团的发展潜力不断增强,发展前景更加广阔。二是发展空间持续拓宽。集团紧扣“**”发展目标,逐步搭建政企、企企、银企、校企、研企“五大合作平台”,联手开发土地、房产、技术项目等存量资源,找准了发展新路径。三是发展优势持续叠加。经过多年发展,集团经济逆势增长,综合实力和价值创造能力不断提升,目前正在排水中水、文旅开发、水质检测、数字服务等产业加速布局,推进全面起势,集团发展支撑更加有力,发展优势更加彰显。三、下半年工作安排下半年,集团继续锚定“**”发展战略目标,以“供排一体、双轮驱动”为引领,加快构建多业并举、多点支撑、多元发展产业体系,增强自我造血机能。
(二)机遇难得。一是发展后劲持续增强。市委、市政府对水务集团发展更加关注,在新建污水处理厂、全市排水资源整合等方面给予大力支持,集团的发展潜力不断增强,发展前景更加广阔。二是发展空间持续拓宽。集团紧扣“**”发展目标,逐步搭建政企、企企、银企、校企、研企“五大合作平台”,联手开发土地、房产、技术项目等存量资源,找准了发展新路径。三是发展优势持续叠加。经过多年发展,集团经济逆势增长,综合实力和价值创造能力不断提升,目前正在排水中水、文旅开发、水质检测、数字服务等产业加速布局,推进全面起势,集团发展支撑更加有力,发展优势更加彰显。三、下半年工作安排下半年,集团继续锚定“**”发展战略目标,以“供排一体、双轮驱动”为引领,加快构建多业并举、多点支撑、多元发展产业体系,增强自我造血机能。
(二)完善基础设施,建设优美宜居村镇。积极争取资金投入,尽快建设实施连心桥及周边附属设施;力争在年底前完成XX镇综合服务运输站建设。继续保持专班不散,积极配合镇广高速的后续建设,全力做好纠纷协调、矛盾化解,确保镇广高速建设平安有序。持续抓好农村公路升级改造,多方筹措资金,尽快完成因汛期降雨、滑坡、沉降损毁的37处700米道路修复。灵活利用91个公益性岗位,进一步加大村级公路及重点路段的道路养护工作力度,推进镇村道路绿化、美化、亮化工作。(三)加强生态治理,践行绿色生态理念。牢固树立和践行“绿水青山就是金山银山”的理念,强化镇、村环境卫生检查督办和考核力度。强力推进大气污染防治,强化建筑扬尘和渣土运输管控,抓好秸秆禁烧、水环境治理等工作,持续改善和提升空气质量。认真落实耕地保护和环境保护制度。落实控绿、造绿、植绿、护绿行动,统筹推进乡村绿化美化、退耕还林等工程建设,实现全镇宜林地、通道绿化地、村庄绿化地等应绿尽绿,积极申报巴中市级生态文明村,力争创成生态乡镇。
二、探究新知一、点到直线的距离、两条平行直线之间的距离1.点到直线的距离已知直线l的单位方向向量为μ,A是直线l上的定点,P是直线l外一点.设(AP) ?=a,则向量(AP) ?在直线l上的投影向量(AQ) ?=(a·μ)μ.点P到直线l的距离为PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.两条平行直线之间的距离求两条平行直线l,m之间的距离,可在其中一条直线l上任取一点P,则两条平行直线间的距离就等于点P到直线m的距离.点睛:点到直线的距离,即点到直线的垂线段的长度,由于直线与直线外一点确定一个平面,所以空间点到直线的距离问题可转化为空间某一个平面内点到直线的距离问题.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是C1C,D1A1的中点,则点A到直线EF的距离为 . 答案: √174/6解析:如图,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
一、2023年上半年安全生产工作开展情况(一)全旗安全生产形势截至目前,我旗发生2起一般生产安全事故,死亡2人,非煤矿山、危险化学品、烟花爆竹、金属冶炼等重点行业领域未发生生产安全事故,全旗安全生产总体形势较为平稳。(二)各重点行业领域安全生产隐患排查情况我旗全面开展对危险化学品、非煤矿山、烟花爆竹、冶金工贸等重点行业领域生产经营单位安全生产隐患排查治理和重点领域专项整治,各项检查21次,先后检查各类生产经营单位(企业)68家次,共发现安全隐患231条,现已全部整改完成,安全生产行政处罚16家,罚款28.7万元。(三)安全生产专项整治三年行动工作开展情况持续深入开展全旗安全生产专项整治三年行动集中攻坚行动,认真对照任务清单,建立健全隐患排查制度,调动各行业主管部门力量,逐条逐项推进专项整治工作,深入分析安全生产共性问题和突出隐患,及时动态更新“四个清单”。截至目前,各专项领域共排查企业1914家次,排查隐患732处,已整改649处,整改率89%。各部门成立联合检查组64次,督导检查单位505家,警示约谈72家;以三年整治行动为契机,继续强化我旗安全生产薄弱环节,确保全旗安全生产形势持续稳定向好。
第一个板块是“脑筋急转弯”,激发学习兴趣。目的有两个:一是拉近与学生的距离,二是为本节课做铺垫。第二板块是自主探究,优化策略。这一部分内容通过“操作感悟——抽象内化——巩固应用”三个片段,使学生在教师的点拨引导下,沿以下四个步骤:“一张和两张饼的烙法(基础)→三张饼的最佳烙法(难点)→双数饼、单数饼的烙法(提升)→最佳方案、双数饼:两张两张烙;单数饼:两张两张烙+最后3张饼交叉烙(优化)进行探究。1、探索烙3张饼的最少时间是本节课的重点也是难点,优化的数学思想只能是“渗透”而不能“明透”,也就是说只能让学生在潜移默化的过程中理解,而不能仅仅靠传授。因此,本课中蓄势----为探索最佳方法打基础的方法,自认为运用得恰到好处。例如,围绕“烙2张饼最少要花6分,为什么烙1张饼与2张饼所用的时间一样多呢?你们是怎么想的?”这个问题,让学生体会烙2张饼是用足了空间,而烙1张饼浪费了空间和时间,为探索烙3张饼埋下了伏笔。
一、说教材“植树问题”是人教版新课程标准实验教材五年级上册“数学广角”106页的内容。本节课主要探讨关于在一条线段植树的问题,只要教过这节课的老师都知道,即使在一条线段上植树也有不同的情形:本节课主要讲的例1,主要研究两端都要栽的植树问题,也是这一系列内容的起始课,教材以学生比较熟悉的植树活动为线索,让学生选用画线段图的方法来探究栽树的棵数和间隔数之间的关系,经历猜想、试验、推理等数学探索的过程,并启发学生透过现象发现其中的规律,抽取出数学模型,再利用规律回归生活,解决生活实际问题。大家都知道,数学的思想方法是数学的灵魂。本册安排“植树问题”的目的就是向学生渗透复杂问题从简单入手的思想。为此,本课制定了三个教学目标:
在展示交流,精讲点拨环节学生答题过程中老师巡视,发现不同的方法让学生去板演。1、学生展示学生展示不同的方法,并进行讲解,让学生充分说出自己的思路及解题过程。在这一环节,学生进行了充分的互动,有质疑,有解疑,有纠错,有评价,有反馈,。2、教师根据学生的方法及时利用多媒体进行演示,让学生更加直观的理解不同的解题思路。然后变换题中的条件,让学生自己列方程解答。3、说一说生活中那些情境也可以用类似的等量关系式解答,这一设计让数学回归生活,加强了数学与生活的联系。在达标检测,强化巩固环节老师以课本为主,让学生完成课本练一练的2,4基础题。又进行了拓展,出了一道稍有难度的题进行拓展练习。既巩固了基础,又做到了分层优化。在小结评价,自我反思环节让学生说说本节课的收获,可以是学习上的,也可以是习惯上的。让学生进行了自我反思,反思自己的不足,加以改正。
导语在必修第一册中,我们研究了函数的单调性,并利用函数单调性等知识,定性的研究了一次函数、指数函数、对数函数增长速度的差异,知道“对数增长” 是越来越慢的,“指数爆炸” 比“直线上升” 快得多,进一步的能否精确定量的刻画变化速度的快慢呢,下面我们就来研究这个问题。新知探究问题1 高台跳水运动员的速度高台跳水运动中,运动员在运动过程中的重心相对于水面的高度h(单位:m)与起跳后的时间t(单位:s)存在函数关系h(t)=-4.9t2+4.8t+11.如何描述用运动员从起跳到入水的过程中运动的快慢程度呢?直觉告诉我们,运动员从起跳到入水的过程中,在上升阶段运动的越来越慢,在下降阶段运动的越来越快,我们可以把整个运动时间段分成许多小段,用运动员在每段时间内的平均速度v ?近似的描述它的运动状态。
(8)物价部门规定,此新型通讯产品售价不得高于每件80元。在此情况下,售价定为多少元时,该公司可获得最大利润?最大利润为多少万元?若该公司计划年初投入进货成本m不超过200万元,请你分析一下,售价定为多少元,公司获利最大?售价定为多少元,公司获利最少?三、小练兵:某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,销售量y(件)与销售单价x(元)之间的函数关系式为y= –20 x +1800.(1)写出销售该品牌童装获得的利润w(元)与销售单价x(元)之间的函数关系式;(2)若童装厂规定该品牌童装销售单价不低于76元,不高于78元,那么商场销售该品牌童装获得的最大利润是多少元?(3)若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,那么商场销售该品牌童装获得的最大利润是多少元?
(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?解析:(1)分1≤x<50和50≤x≤90两种情况进行讨论,利用利润=每件的利润×销售的件数,即可求得函数的解析式;(2)利用(1)得到的两个解析式,结合二次函数与一次函数的性质分别求得最值,然后两种情况下取最大的即可.解:(1)当1≤x<50时,y=(200-2x)(x+40-30)=-2x2+180x+2000;当50≤x≤90时,y=(200-2x)(90-30)=-120x+12000.综上所述,y=-2x2+180x+2000(1≤x<50),-120x+12000(50≤x≤90);(2)当1≤x<50时,y=-2x2+180x+2000,二次函数开口向下,对称轴为x=45,当x=45时,y最大=-2×452+180×45+2000=6050;当50≤x≤90时,y=-120x+12000,y随x的增大而减小,当x=50时,y最大=6000.综上所述,销售该商品第45天时,当天销售利润最大,最大利润是6050元.方法总结:本题考查了二次函数的应用,读懂表格信息、理解利润的计算方法,即利润=每件的利润×销售的件数,是解决问题的关键.