语言是人类最重要的交际工具。特别是在信息技术、科学技术飞速发展的今天,人们交往日益频繁。它要求社会成员有较高的语言表达能力,能用清晰、简洁的语言表达自己的观点和见解,能够适应语言传递技术现代化的要求,以迎接人机对话时代的到来。正如新《纲要》中说的“鼓励幼儿大胆、清楚地表达自己的想法和感受。尝试说明、描述简单的事物或过程,发展语言表达能力和思维能力”,因此,鼓励幼儿创造性地运用语言显得尤为重要。对于小班幼儿而言,诗歌欣赏还是有些陌生的。所以,我挑选了比较适合小班幼儿天性的素材《秋天的画报》这首诗歌主题单纯、内容浅显、短小精练又生动活泼。它用多彩的颜色和好吃的水果来描述秋天,不仅向我们展示了一个色彩斑斓的秋天,又给人以视觉和味觉上的享受。我想,一首好的幼儿诗歌,不仅仅可以丰富幼儿的知识,发展语言,启迪智力,而且还可以使幼儿的心灵和情感受到良好的熏陶。培养幼儿对文学作品的兴趣,更重要的是可以发展幼儿的想象力和创造思维能力。
1、在材料的选择上,我充分利用废旧物品进行自制,如:用废旧的挂历纸,制作头饰;用旧布头,缝制沙包;用易拉罐,制作梅花桩;用奶瓶,作成手榴弹;用废旧材料,制作可调高矮的山洞。在环境材料的创设上,我利用暗示性原则,如:在以前的活动中,我发现幼儿往往离山洞较远的地方就开始下蹲、伸腿,以至于不能顺利侧面钻过山洞。于是我在山洞前后贴上小脚印,暗示幼儿在什么时候开始下蹲、伸腿最合适。山洞上的头饰,暗示小动物各队所走的路线。绿色的水纹,暗示小溪。2、新《纲要》指出:“教师应成为学习活动的支持者、合作者、引导者。”在本次活动中我除了要以饱满的热情吸引幼儿外,还采用了以下几种方法:(1)讲解示范法:中班幼儿的思维是直观的,以形象思维为主。所以,在体育活动中,教师的讲解、示范,以及同伴的示范,会给孩子带来很大的帮助。他们能够较快地领会动作的要求,在自主的活动中掌握动作的技巧。
《能干的小手》是省编教材小班上学期主题六《我自己》中的一个活动内容,我选择本活动是由于:1、小班幼儿已具有初步的自我意识,对身体各器官逐步产生探索兴趣。然而,幼儿对身体器官的认识还很肤浅,爱护身体、保护自己的经验又比较缺乏,此活动的进行,可以使孩子认识自己的小手,知道小手的用处,对自己的小手感兴趣并萌发保护小手的意识。2、现在的独生子女是在衣来伸手,饭来张口的环境中长大的,家长包办替代和过度宠爱使孩子失去一些自我服务的机会,通过此活动能使孩子认识到自己的小手很能干,激发幼儿自己的事情自己做的愿望,培养幼儿的自理能力。3、本活动灵活性强,不受季节、时间、环境的限制。根据幼儿的年龄特点和现有水平,我确定本活动的目标为:(1)激发幼儿自己的事情自己做的愿望。(2)引导幼儿认识自己的小手,知道手能做许多事情。(3)帮助幼儿初步掌握保护手的方法。
按照心理学常识,幼儿对学习内容产生兴趣,就能自觉地排除内外主客观因素的干扰,集中注意力积极主动地投入学习,把学习当成愉快的事。因此,上课一开始进行复习时,就设计这样的导语:小朋友,我们已经学了很多加减法了,今天老师要来考考你们,看谁最能干,(点出复习题)最先做出老师出的这些题,好吗?在这种刺激下,人人都想当老师眼中的小能手,兴趣一下子就能调动起来。这是引导幼儿复习5以内数的加减;这是复习6的组成。在新课学习中,通过可爱的动物图片群和插入声音的播放,激发幼儿学习新知的欲望,引导幼儿感知、探索得数是6的加法。这是引导幼儿观察动物图片,发现数量关系,学习5+1和1+5,初步引导通过组成计算得数;然后出示4+2和2+4两个算式,让幼儿摆弄小棒探索得。
在教学上,我采用了摸花片给幼儿猜的形式引导幼儿复习5的组成。在教学信息和感知材料的呈现上,我选用了教具模型演示法,让幼儿明确操作的要求和进行操作的方法。在思维活动的组织上,我还通过讲解、比较的方法,将幼儿解决问题的种种策略展示出来,引导幼儿观察分析,找出哪一种是最好的。坚持使教法有利于突出教材重点,突破难点,符合幼儿认识规律和年龄特征。根据教学内容和采取的教学方法及手段,我教给幼儿一些学习的方法。操作法是幼儿学习数学的基本方法。幼儿通过操作进行学习,我对幼儿的操作给予必要的指导,让幼儿去探索、发现,这样的学法可以让幼儿获得宝贵的数学经验,在教给幼儿操作法的同时,考虑到本课内容和幼儿的学习情况,对于学习速率快的幼儿,我教给他们讨论交流的方法,学习速率慢的幼儿,我教给他们按顺序有重点地观察的方法,做到授之于渔。
各位老师、同学们:大家好!很高兴今天能有这个机会和大家坐在一起。我今天讲话的主题是“做遵纪守法的好学生”。希望通过本次学习,使同学们更加清楚地认识如何提高自我防范意识,做一名遵纪守法的好学生,使自己在人生的道路上健康成长,将来做一名建设伟大祖国的栋梁之材。也许,大家认为我所说的都是些大道理,也许大家会觉得讲的都离我们很远,但是我会通过一下这些话,来告诉大家,其实法律就在我们身边,守法其实很简单。我们同学们有没有发现,我们的身边常出现一些较严重的违纪现象,如有的同学私自离校夜不归宿、打架斗殴,偷窃、故意损毁财物等等……种种现象,令人担忧同时也催人深思。法律在我们的一生中是维护自己的武器,同时又是规范自己行为的社会准则。同学们,当你们头脑发热,准备行动时,想一想自己的行为是否触犯了法律;当你受到不良行为侵犯时,能否运用法律武器保护自己。作为新时代的青少年应该争取做到学法、懂法、守法、同时还能用法律的武器保护自己。那么什么叫遵纪守法呢?人们在社会生活中遵守有关纪律,依法办事,严格恪守法律规范就叫遵纪守法。有的同学认为,处处都遵纪守法,那我们就没有自由了。其实这种看法是错误的,俗语说:没有规矩,不成方圆。
当前,我市上下正紧紧围绕“全面领先苏中、抢先跨过长江、率先实现小康,争当苏中第一强市”的“三先一争”奋斗目标,大力实施“工业化、国际化、城市化,建设社会主义新农村”的“三化一新”发展战略,各项工作正在如火如荼的进行之中。中共__市第十二次代表大会提出要精心构筑两大经济带,其中重要的一环就是要大力度整合沿路资源,充分发挥大交通的优势,实现人流、物流、信息流的快速顺畅流动,催生一批项目群,促进沿线乡镇产业的合理布局和快速发展,使高等级公路沿线成为我市中部工业经济新的集聚带。随着__公路拓宽改造工程的开工,我们坚信,中部经济带一定会强势崛起,一定会成为__经济社会发展的重要一极。
大班幼儿所拥有的经验和技能使他乐于自我发现和探索,他们不满足于知识的传授而更愿意通过自己的努力获得更多的经验和知识。同时,他也能够通过同伴间的合作完成更艰难和具有挑战性的任务,享受成功的满足。《劳动者的工具》所显现的内容是完全静态的成品。大班幼儿会满足于这样的学习方式吗?怎样让静态的东西动起来,成为孩子乐于探索,能够发现的新材料呢?正确选择跟学习材料适合和匹配的教学方法,让枯燥的认知活动成为快乐的事,是成功开展本次活动的精髓。思路定位:1.选择幼儿熟知的、同时具有安全操作性日常生活工具作为本次科学活动的探索和认知对象。引导幼儿用“陌生”的眼光去重新审视熟悉的材料,激发好奇心和活动的兴趣,2.让静态的材料“动”起来。将认知的重点从被动接受转移到主动发现探索上。通过幼儿的亲历亲为去发现工具的特点,并通过与同伴的交流探讨建构成新的内需的知识。3.在与同伴的合作中常识使用工具并获得成功的体验。通过操作和实践来验证自身的发现,同时也进一步了解工具与人类生活的关系。具体教案与环节分析:[活动目标]1.运用多种感官探索和发现工具的秘密,积极探讨交流自己的发现和见解。2.尝试和同伴合作使用某一工具完成任务,体验合作的快乐和尝试的成功。3.初步了解工具与人类生活的关系,激发自豪感。
本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.5.1节《函数零点与方程的解》,由于学生已经学过一元二次方程与二次函数的关系,本节课的内容就是在此基础上的推广。从而建立一般的函数的零点概念,进一步理解零点判定定理及其应用。培养和发展学生数学直观、数学抽象、逻辑推理和数学建模的核心素养。1、了解函数(结合二次函数)零点的概念;2、理 解函数零点与方程的根以及函数图象与x轴交点的关系,掌握零点存在性定理的运用;3、在认识函数零点的过程中,使学生学会认识事物的特殊性与一般性之间的关系,培养数学数形结合及函数思想; a.数学抽象:函数零点的概念;b.逻辑推理:零点判定定理;c.数学运算:运用零点判定定理确定零点范围;d.直观想象:运用图形判定零点;e.数学建模:运用函数的观点方程的根;
本章通过学习用二分法求方程近似解的的方法,使学生体会函数与方程之间的关系,通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用,进一步认识到函数是描述客观世界变化规律的基本数学模型,能初步运用函数思想解决一些生活中的简单问题。1.了解函数的零点、方程的根与图象交点三者之间的联系.2.会借助零点存在性定理判断函数的零点所在的大致区间.3.能借助函数单调性及图象判断零点个数.数学学科素养1.数学抽象:函数零点的概念;2.逻辑推理:借助图像判断零点个数;3.数学运算:求函数零点或零点所在区间;4.数学建模:通过由抽象到具体,由具体到一般的思想总结函数零点概念.重点:零点的概念,及零点与方程根的联系;难点:零点的概念的形成.
方法总结:当某一事件A发生的可能性大小与相关图形的面积大小有关时,概率的计算方法是事件A所有可能结果所组成的图形的面积与所有可能结果组成的总图形面积之比,即P(A)=事件A所占图形面积总图形面积.概率的求法关键是要找准两点:(1)全部情况的总数;(2)符合条件的情况数目.二者的比值就是其发生的概率.探究点二:与面积有关的概率的应用如图,把一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,自由转动转盘,停止后指针落在B区域的概率为________.解析:∵一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,∴圆形转盘被等分成10份,其中B区域占2份,∴P(落在B区域)=210=15.故答案为15.三、板书设计1.与面积有关的等可能事件的概率P(A)= 2.与面积有关的概率的应用本课时所学习的内容多与实际相结合,因此教学过程中要引导学生展开丰富的联想,在日常生活中发现问题,并进行合理的整合归纳,选择适宜的数学方法来解决问题
1.进一步理解概率的意义并掌握计算事件发生概率的方法;(重点)2.了解事件发生的等可能性及游戏规则的公平性.(难点)一、情境导入一个箱子中放有红、黄、黑三个小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,那么这个游戏是否公平?二、合作探究探究点一:与摸球有关的等可能事件的概率【类型一】 摸球问题一个不透明的盒子中放有4个白色乒乓球和2个黄色乒乓球,所有乒乓球除颜色外完全相同,从中随机摸出1个乒乓球,摸出黄色乒乓球的概率为()A.23 B.12 C.13 D.16解析:根据题意可得不透明的袋子里装有6个乒乓球,其中2个黄色的,任意摸出1个,则P(摸到黄色乒乓球)=26=13.故选C.方法总结:概率的求法关键是找准两点:①全部情况的总数;②符合条件的情况数目.二者的比值就是其发生的概率.【类型二】 与代数知识相关的问题已知m为-9,-6,-5,-3,-2,2,3,5,6,9中随机取的一个数,则m4>100的概率为()A.15 B.310 C.12 D.35
证明:过点A作AF∥DE,交BC于点F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法总结:利用等腰三角形“三线合一”得出结论时,先必须已知一个条件,这个条件可以是等腰三角形底边上的高,可以是底边上的中线,也可以是顶角的平分线.解题时,一般要用到其中的两条线互相重合.三、板书设计1.全等三角形的判定和性质2.等腰三角形的性质:等边对等角3.三线合一:在等腰三角形的底边上的高、中线、顶角的平分线中,只要知道其中一个条件,就能得出另外的两个结论.本节课由于采用了动手操作以及讨论交流等教学方法,有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对等腰三角形的“三线合一”性质理解不透彻,还需要在今后的教学和作业中进一步巩固和提高
方程有两个不相等的实数根.综上所述,m=3.易错提醒:本题由根与系数的关系求出字母m的值,但一定要代入判别式验算,字母m的取值必须使判别式大于0,这一点很容易被忽略.三、板书设计一元二次方程的根与系数的关系关系:如果方程ax2+bx+c=0(a≠0) 有两个实数根x1,x2,那么x1+x2 =-ba,x1x2=ca应用利用根与系数的关系求代数式的值已知方程一根,利用根与系数的关系求方程的另一根判别式及根与系数的关系的综合应用让学生经历探索,尝试发现韦达定理,感受不完全的归纳验证以及演绎证明.通过观察、实践、讨论等活动,经历发现问题、发现关系的过程,养成独立思考的习惯,培养学生观察、分析和综合判断的能力,激发学生发现规律的积极性,激励学生勇于探索的精神.通过交流互动,逐步养成合作的意识及严谨的治学精神.
3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;
2、猜想 一元二次方程的两个根 的和与积和原来的方程有什么联系?小组交流。3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;
解析:(1)连接BI,根据I是△ABC的内心,得出∠1=∠2,∠3=∠4,再根据∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可证出IE=BE;(2)由三角形的内心,得到角平分线,根据等腰三角形的性质得到边相等,由等量代换得到四条边都相等,推出四边形是菱形.解:(1)BE=IE.理由如下:如图①,连接BI,∵I是△ABC的内心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四边形BECI是菱形.证明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的内心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)证得IE=BE,∴BE=CE=BI=IC,∴四边形BECI是菱形.方法总结:解决本题要掌握三角形的内心的性质,以及圆周角定理.
解析:(1)由切线的性质得AB⊥BF,因为CD⊥AB,所以CD∥BF,由平行线的性质得∠ADC=∠F,由圆周角定理的推论得∠ABC=∠ADC,于是证得∠ABC=∠F;(2)连接BD.由直径所对的圆周角是直角得∠ADB=90°,因为∠ABF=90°,然后运用解直角三角形解答.(1)证明:∵BF为⊙O的切线,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半径为203.方法总结:运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
首先,非常高兴、也非常欢迎各位家长来校参加今天的活动。你们含辛茹苦、倾注心血、倾其所有地养育孩子。我知道,此刻,作为父母,你们的内心会有诸多的感慨,酸甜苦辣挥不去,百般滋味上心头,但更多的一定是满满的骄傲、甜甜的幸福和殷殷的期许!XX中学感谢全体家长三年来对学校工作的信任、理解和支持。因为有你们,我们的学生才得以无忧成长、走向优秀;因为有你们,XX中学才得以不断发展、品质提升。我提议,让我们用热烈的掌声向家长朋友们表示诚挚的欢迎和衷心的感谢!
说教学目标? 1.能有感情地朗诵诗歌,懂得为人民的人将获得永生,与人民为敌的人必然灭亡的道理。2.了解本文运用的对比手法,体会运用这种手法的好处。?3.结合诗歌及本单元的课文和搜集的资料,说说鲁迅是一个怎样的人。?三、说教学重难点1.能有感情地朗诵诗歌,理解诗歌深刻的内涵,真切感悟做人的真谛,结合诗歌及本单元的课文和搜集的资料,说说鲁迅是一个怎样的人。2.能有感情地朗诵诗歌,理解诗歌深刻的内涵,真切感悟做人的真谛,了解诗歌中对比手法的运用。四、说教法学法本篇课文采用了对比的手法,诗人在诗歌中的爱憎分明,感情强烈,应该让学生在阅读和诵读中加以体会。为此,我采用了以下教学方法:讨论法。通过讨论、交流,让学生明白“前一种人”和“后一种人”的表现及结局的不同,理解这两种人分别是什么样的人,进而赞颂哪些人,贬斥哪些人。引导学生自主探究,和同学交流,享受自学成功的喜悦。