(2)由题意可得-10x2+180x+400=1120,整理得x2-18x+72=0,解得x1=6,x2=12(舍去).所以,该产品的质量档次为第6档.方法总结:解决此类问题的关键是要吃透题意,确定变量,建立函数模型.变式训练:见《学练优》本课时练习“课后巩固提升”第8题三、板书设计二次函数1.二次函数的概念2.从实际问题中抽象出二次函数解析式二次函数是一种常见的函数,应用非常广泛,它是客观地反映现实世界中变量之间的数量关系和变化规律的一种非常重要的数学模型.许多实际问题往往可以归结为二次函数加以研究.本节课是学习二次函数的第一节课,通过实例引入二次函数的概念,并学习求一些简单的实际问题中二次函数的解析式.在教学中要重视二次函数概念的形成和建构,在概念的学习过程中,让学生体验从问题出发到列二次函数解析式的过程,体验用函数思想去描述、研究变量之间变化规律的意义.
4.x的值是否可以任意取?如果不能任意取,请求出它的范围,[x的值不能任意取,其范围是0≤x≤2]5.若设该商品每天的利润为y元,求y与x的函数关系式。[y=(10-8-x) (100+100x)(0≤x≤2)]将函数关系式y=x(20-2x)(0 <x <10=化为:y=-2x2+20x (0<x<10)…(1)将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为:y=-100x2+100x+20D (0≤x≤2)…(2)三、观察;概括1.教师引导学生观察函数关系式(1)和(2),提出问题让学生思考回答;(1)函数关系式(1)和(2)的自变量各有几个? (各有1个)(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?(分别是二次多项式)(3)函数关系式(1)和(2)有什么共同特点? (都是用自变量的二次多项式来表示的)(4)本章导图中的问题以及P1页的问题2有什么共同特点?让学生讨论、归结为:自变量x为何值时,函数y取得最大值。2.二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数, a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.
教学目标:1、理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值。2、了解计算一个锐角的正切值的方法。教学重点:理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值。教学难点:计算一个锐角的正切值的方法。教学过程:一、观察回答:如图某体育馆,为了方便不同需求的观众设计了多种形式的台阶。下列图中的两个台阶哪个更陡?你是怎么判断的?图(1) 图(2)[点拨]可将这两个台阶抽象地看成两个三角形答:图 的台阶更陡,理由 二、探索活动1、思考与探索一:除了用台阶的倾斜角度大小外,还可以如何描述台阶的倾斜程度呢?① 可通过测量BC与AC的长度,② 再算出它们的比,来说明台阶的倾斜程度。(思考:BC与AC长度的比与台阶的倾斜程度有何关系?)答:_________________.③ 讨论:你还可以用其它什么方法?能说出你的理由吗?答:________________________.2、思考与探索二:
方法总结:垂径定理虽是圆的知识,但也不是孤立的,它常和三角形等知识综合来解决问题,我们一定要把知识融会贯通,在解决问题时才能得心应手.变式训练:见《学练优》本课时练习“课后巩固提升”第2题【类型三】 动点问题如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.解析:当点P处于弦AB的端点时,OP最长,此时OP为半径的长;当OP⊥AB时,OP最短,利用垂径定理及勾股定理可求得此时OP的长.解:作直径MN⊥弦AB,交AB于点D,由垂径定理,得AD=DB=12AB=4cm.又∵⊙O的直径为10cm,连接OA,∴OA=5cm.在Rt△AOD中,由勾股定理,得OD=OA2-AD2=3cm.∵垂线段最短,半径最长,∴OP的长度范围是3cm≤OP≤5cm.方法总结:解题的关键是明确OP最长、最短时的情况,灵活利用垂径定理求解.容易出错的地方是不能确定最值时的情况.
(3)若要满足结论,则∠BFO=∠GFC,根据切线长定理得∠BFO=∠EFO,从而得到这三个角应是60°,然后结合已知的正方形的边长,也是圆的直径,利用30°的直角三角形的知识进行计算.解:(1)FB=FE,PE=PA;(2)四边形CDPF的周长为FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假设存在点P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法总结:由于存在性问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算.一般思路是:假设存在——推理论证——得出结论.若能导出合理的结果,就做出“存在”的判断,若导出矛盾,就做出“不存在”的判断.
解析:首先求得圆的半径长,然后求得P、Q、R到Q′的距离,即可作出判断.解:⊙O′的半径是r= 12+12=2,PO′=2>2,则点P在⊙O′的外部;QO′=1<2,则点Q在⊙O′的内部;RO′=(2-1)2+(2-1)2=2=圆的半径,故点R在圆上.方法总结:注意运用平面内两点之间的距离公式,设平面内任意两点的坐标分别为A(x1,y1),B(x2,y2),则AB=(x1-x2)2+(y1-y2)2.【类型四】 点与圆的位置关系的实际应用如图,城市A的正北方向50千米的B处,有一无线电信号发射塔.已知,该发射塔发射的无线电信号的有效半径为100千米,AC是一条直达C城的公路,从A城发往C城的客车车速为60千米/时.(1)当客车从A城出发开往C城时,某人立即打开无线电收音机,客车行驶了0.5小时的时候,接收信号最强.此时,客车到发射塔的距离是多少千米(离发射塔越近,信号越强)?(2)客车从A城到C城共行驶2小时,请你判断到C城后还能接收到信号吗?请说明理由.
解析:根据锐角三角函数的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,锐角的正弦值随着角的增大而增大,∴sin70°>sin20°=cos70°.故选D.方法总结:当角度在0°cosA>0.当角度在45°<∠A<90°间变化时,tanA>1.变式训练:见《学练优》本课时练习“课堂达标训练”第10题【类型四】 与三角函数有关的探究性问题在Rt△ABC中,∠C=90°,D为BC边(除端点外)上的一点,设∠ADC=α,∠B=β.(1)猜想sinα与sinβ的大小关系;(2)试证明你的结论.解析:(1)因为在△ABD中,∠ADC为△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函数的定义可求出sinα,sinβ的关系式即可得出结论.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法总结:利用三角函数的定义把两角的正弦值表示成线段的比,然后进行比较是解题的关键.
[教学目标]1、 理解并掌握正弦、余弦的含义,会在直角三角形中求出某个锐角的正弦和余弦值。2、能用函数的观点理解正弦、余弦和正切。[教学重点与难点] 在直角三角形中求出某个锐角的正弦和余弦值。[教学过程] 一、情景创设1、问题1:如图,小明沿着某斜坡向上行走了13m后,他的相对位置升高了5m,如果他沿着该斜坡行走了20m,那么他的相对位置升高了多少?行走了a m呢?2、问题2:在上述问题中,他在水平方向又分别前进了多远?二、探索活动1、思考:从上面的两个问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值________;它的邻边与斜边的比值________。(根据是__________________。)2、正弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的对边a与斜边c的比叫做∠A的______,记作________,即:sinA=________=________.3、余弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的邻边b与斜边c的比叫做∠A的______,记作=_________,即:cosA=______=_____。(你能写出∠B的正弦、余弦的表达式吗?)试试看.___________.
已知一水坝的横断面是梯形ABCD,下底BC长14m,斜坡AB的坡度为3∶3,另一腰CD与下底的夹角为45°,且长为46m,求它的上底的长(精确到0.1m,参考数据:2≈1.414,3≈1.732).解析:过点A作AE⊥BC于E,过点D作DF⊥BC于F,根据已知条件求出AE=DF的值,再根据坡度求出BE,最后根据EF=BC-BE-FC求出AD.解:过点A作AE⊥BC,过点D作DF⊥BC,垂足分别为E、F.∵CD与BC的夹角为45°,∴∠DCF=45°,∴∠CDF=45°.∵CD=46m,∴DF=CF=462=43(m),∴AE=DF=43m.∵斜坡AB的坡度为3∶3,∴tan∠ABE=AEBE=33=3,∴BE=4m.∵BC=14m,∴EF=BC-BE-CF=14-4-43=10-43(m).∵AD=EF,∴AD=10-43≈3.1(m).所以,它的上底的长约为3.1m.方法总结:考查对坡度的理解及梯形的性质的掌握情况.解决问题的关键是添加辅助线构造直角三角形.
一、本章知识要点: 1、锐角三角函数的概念; 2、解直角三角形。二、本章教材分析: (一).使学生正确理解和掌握三角函数的定义,才能正确理解和掌握直角三角形中边与角的相互关系,进而才能利用直角三角形的边与角的相互关系去解直角三角形,因此三角形函数定义既是本章的重点又是理解本章知识的关键,而且也是本章知识的难点。如何解决这一关键问题,教材采取了以下的教学步骤:1. 从实际中提出问题,如修建扬水站的实例,这一实例可归结为已知RtΔ的一个锐角和斜边求已知角的对边的问题。显然用勾股定理和直角三角形两个锐角互余中的边与边或角与角的关系无法解出了,因此需要进一步来研究直角三角形中边与角的相互关系。2. 教材又采取了从特殊到一般的研究方法利用学生的旧知识,以含30°、45°的直角三角形为例:揭示了直角三角形中一个锐角确定为30°时,那么这角的对边与斜边之比就确定比值为1:2。
三、说教学理念:通过观察、猜测及动手操作实验等方法,向学生渗透有序的数学思想。四、说教学过程:一、创设情境、激趣导入。小朋友们喜欢什么样的球类运动呢?让学生各抒已见。当有人说到足球时。老师马上引到学校冬季运动会,我们三年级3个班的比赛情况,结果我们班得了第一。那我们班比赛了几场?学生回答两场。三个班比赛,每两个班比赛一场,那一共要比赛多少场呢?四人小组合作完成。然后汇报,并说理由。二.动手实践,自主探究1.2002年世界杯足球C组比赛有几国家?是哪几个国家?让学生发表意见。他们说不出,老师再告诉他们。2.如果这四个队每两个队踢一场球,一共要踢多少场?(课件演示主题图)3.让学生大胆说一说、猜一猜。4.四人小组用学具卡片摆一摆、讨论讨论。
低年级学生注意力不易持久。单调的练习学生容易产生厌倦情绪,降低练习效率。况且对于笔算两位数加减两位数,学生们掌握得都很熟练了。针对这些,我把整堂课的设计注重以下几点:1、设计生活化的教学内容。《标准》指出:“人人学有价值的数学。”“有价值”的数学应该与学生的现实生活和以往的知识体验有密切的关系,是对他们有吸引力、能使他们产生兴趣的内容。这节课我的教学内容是笔算。开始时我并没有直接出示两位数加减两位数的笔算练习,从旧知到新知。而是试图从日常生活入手,创设一个帮助老师选择买东西的情境,希望通过帮助老师从2种价格不同的电风扇和从2种价格不同的洗衣机中各选择一样,计算价格,力图从真实的生活环境中解决问题,放开手让他们去学。况且用学生熟悉的,有兴趣的,贴近他们现实生活的内容进行教学,才能唤起他们的学习兴趣,调动学习积极性,使学生感受到生活与数学知识是密不可分的,使数学课富有浓郁的生活气息,从而产生学习和探求数学的动机,主动应用数学去思考问题、解决问题。
二、说教法在本课的教学中我力求改变过去重知识、轻能力,重结果、轻过程,重教法、轻学法的状况。树立以“以学生发展为本”、“以学定教”、“教为学服务”的思想。本课的教学方法有创设情境法、引导探究法、类比迁移法、归纳总结法、组织练习法等。三、说学法我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而我们要特别重视学生学习方法的培养和指导。本课学生的学习方法主要有:自主发现法、合作探究法、类比迁移法、归纳总结法、感知体验法等。四、说教学程序课标指出教学应遵循学生学习数学的心理规律,强调从学生已有生活经验出发,将数学活动置身于实施的生活背景之中,为他们提供观察操作、实现的机会。根据本节课的教学内容我设置了如下四大环节:(一)复习旧知、引入新课。
我说课的内容是小学数学二年级下册《1000以内数的认识》,本节课的教学时建立在学生学习过百以内数的认识基础之上的,是学生对100以内数的认识的延伸和扩展,同时,它有着一个非常重要的地位,就是要为学习10000以内数的认识做好铺垫,因为,1000或10000都是比较大的数,在学生的认识还很有限的基础上,如何让学生能尽快的建立起大数的概念和意识,在这里格外重要,对于这一部分内容,《小学数学课程标准》中是这样阐述的:能认、读、写万以内的数,会用数表示物体的个数或事物的顺序和位置,能说出各数位的名称,识别各数位的数字的意义;结合现实素材感受大数的意义,并能进行结算。根据这一阐述,我把本课时的教学目标定义以下几点:1、学习1000以内的数,体验数的产生和作用。2、会数1000以内的数,认识计数单位“千”,体会十进关系。3、让学生经历观察、猜想、操作等数学活动过程,结合现实材料感受大数的意义,逐渐发展学生的数感。
(四)、课堂小结:1.提出问题:请谈一谈这节课你有哪些收获?2.你觉得这节课自己表现怎么样?谁表现得最好?请你评一评。(进一步引导学生对比较数的大小的方法进行归纳、总结,从而使学生完成知识的构建。让学生对自己和同伴做出评价,以利于学生今后的成长。)总之,本节课的设计力图体现新课程的理念,以促进学生的发展为宗旨,充分体现了学生学习的自主性,相信学生的能力,挖掘学生的各项能力,,激发学生学习数学的兴趣,增强数学学习的信心,体会数学与生活的联系。七、说教学反思在二年级下册《万以内数的认识》单元中,学生已经掌握了“千以内数的大小比较”的方法,“万以内数的大小比较”只需在此基础上完成知识的顺迁移即可。因此,在本堂课的教学设计中我并不急着把“比较数的大小”的方法教给学生,而是把重点放在了学生对大小比较的真正理解上,通过本节课的学习能用自己的方法解决实际问题。
【说教材分析】本节课的教学内容是千以内数的大小比较,教材把比较数的大小分为两种情况:位数相同的数比较大小,位数不同的数比较大小。是在学生掌握了百以内数的大小比较方法,能认读千以内数,理解数的组成的基础上开展教学的。而且在实际生活中,学生积累了大量感性经验,学生已经能初步感知、判断出数的大小。本节课的重点首先应达成知识技能目标,学生自主探究出千以内数的大小比较方法,能正确、快速比较出千以内数的大小,在大量的、多种形式的练习中培养学生的数感。教材没有将比较数的大小的方法归纳概括出来,是放手让学生自主观察、比较、分析、概括,合作商量,在学生充分表达、交流自己的想法的过程中,让学生自己发现、总结出数的大小比较方法。其次,在实际应用中让学生体会到生活中对数的应用的广泛性、实用性,从而强化所学知识,获得积极的情感体验。
3、教材结构分析教材内容可以看出,本节课包含四个知识的内容。即调查入学时的体重情况填写统计表;收集现在(二年级)的体重情况填写统计表;把入学以及现在的体重情况统一填写到同一个统计表中;整理、分析表内信息回答简单的问题。但从本地学生情况实际出发,以及条件的限制,所以本人对教材内容进行了略微的调整,将调查入学时的体重情况填写统计表改为统计本地区天气情况,也与现实生活紧密地联系在一起。同时,按照教材的逻辑性将知识整合在新课程改革的目标中。4、教学目标(1)知识目标:能运用信息的手段、新的学习方法收集整理数据完成简单的复合式统计图。(2)情感目标:能根据统计图表中的数据提出并解答简单的问题,感受生活中处处有数学,结合实例有机地进行家乡情的教育。
二、说教法从教学内容来看,统计教学以探究研讨法为主。如设计中进行下个月进货的决策时,对已有的销售数据进行统计学上的分析外,其结果能对下一步的科学决策提供依据,体现统计在实际生活中的作用。从教学对象来看,小学中年级多用引导发现法、尝试教学法。随着年龄的增长,学生对社会问题也会越来越好奇和关心,因此素材的选择加强了联系社会生活实际,如设计垃圾调查与研究等题材,潜移默化地对学生进行保护环境等社会问题任何一节数学课都是多种教学方法的综合运用,如谈话法、讲解法等的有机结合!三、说学法在教学互动过程中,引导学生探索、、交流、观察、猜测、归纳等方法,培养学生的观察能力、分析能力及合作能力。因为是统计课,课前要去收集、整理实例,为课内互相交流积累素材。四、说教学过程(一)情境创设,复习旧知学校要购买一批体育器材,现在要调查同学们对体育运动的爱好。出示402班学生的纵向单式统计图情况。之后收集、整理、绘制本班学生的统计情况。
三、情感与态度目标教学重点:在合作讨论的过程中体会数据在现实生活中的作用,理解扇形统计图的特点,并能从中发现信息。教学难点:能从扇形统计图中获得有用信息,并做出合理推断。二、学情分析本单元的教学是在学生已有统计经验的基础上,学习新知的。六年级的学生已经学习了条形统计图和折线统计图,知道他们的特点,并具有一定的概括、分析能力,在此基础上,通过新旧知识对比,自然生成新知识点。三、设计理念和教法分析1、本堂课力争做到由“关注知识”转向“关注学生”,由“传授知识”转向“引导探索”,“教师是组织者、领导者。”将课堂设置问题给学生,让学生自己收集信息、分析信息,自主探索、合作交流,参与知识的构建。2、运用探究法。探究的方法属于启发式教学,探究学习的内容以问题的形式出现在教师的引导下,学生自主探究,让学生在课堂上多活动、多思考,自主构建知识体系。引导学生收集资料,获取信息并合作交流。
一年级学生是7-8岁的儿童,思维活跃,课堂上喜欢表现自己,在学习中随意性非常明显,渴望得到教师或同学的赞许。“比大小”这一内容的教学是在学生已经初步会认、读、写5以内各数的基础上教学的。充分利用学生的生活经验,引导学生用1-5各数来表示物体的个数,还要引导学生通过观察、比较、操作等实践活动,增加感性认识,初步接触集合、对应、统计等数学思想。相信本节课内容的教学,学生掌握并不会感到十分的困难。 说教学策略:结合本班的学情,为了突出学生的主体地位,在教学中让学生积极动手、动眼、动脑、动口,引导学生通过自己的学习,体验知识的形成过程,积极开展本节课的教学活动。为更好地突出重点,突破难点,我准备采用以下教学方法。一、创设情境,调动学生的生活经验,引起学习兴趣。使学生好学。二、动手实践,探索新知。调动学生学习的积极性,使学生会学,在学习过程中有意培养学生主动探索的能力。