教学目标:1.经历由实物抽象出几何体的过程,进一步发展空间观念。2.会画圆柱、圆锥、球的三视图,体会这几种几何体与其视图之间的相互转化。3.会根据三视图描述原几何体。教学重点:掌握部分几何体的三视图的画法,能根据三视图描述原几何体。教学难点:几何体与视图之间的相互转化。培养空间想像观念。课型:新授课教学方法:观察实践法教学过程设计一、实物观察、空间想像设置:学生利用准备好的大小相同的正方形方块,搭建一个立体图形,让同学们画出三视图。而后,再要求学生利用手中12块正方形的方块实物,搭建2个立体图形,并画出它们的三视图。学生分小组合作交流、观察、作图。议一议1.图5-14中物体的形状分别可以看成什么样的几何体?从正面、侧面、上面看这些几何体,它们的形状各是什么样的?2.在图5-15中找出图5-14中各物体的主视图。3.图5-14中各物体的左视图是什么?俯视图呢?
(一)复习旧知,导入新课。1、师:同学们,你们还记得《乌鸦喝水》的故事吗?我们先来看一看这个故事吧!(课件第2张播放视频《乌鸦喝水》)【设计意图】用视频引入课题,激发学生的学习兴趣。2、乌鸦是怎么喝到水的?为什么?(课件第3张)生1:乌鸦把石子投进水罐中,水面升高了,乌鸦就喝到水了。生2:这说明石子占了一定的空间,所以水面会升高,乌鸦才能喝到水。师:这节课我们就来研究一下体积和体积单位。(板书课题)(二)探究新知1.小组实验并观察:(课件地4张)(1)取两个同样大小的玻璃杯,先往一个杯子里倒满水;取一块鹅卵石放入另一个杯子,再把第一个杯子里的水倒进第二个杯子里,会出现什么情况?为什么?(2)汇报交流:(课件第5张)生1:第一个杯子里的水不能全部倒入第二个杯子里。师:你知道为什么会出现这种现象吗?生2:鹅卵石占了一定的空间,所以第一个杯子会剩下一部分水。【设计意图】用实验的方式,让学生从实验的过程中发现现象并进一步思考原因,从而找到规律,培养学生的观察能力、思维能力。2.下面的洗衣机、影碟机和手机,哪个所占的空间大?(课件第6张)洗衣机所占的空间最大。3.引入体积的意义:师:物体所占空间的大小叫做物体的体积。师:上面三个物体,哪个体积最大?哪个体积最小? 生:洗衣机的体积最大,手机的体积最小。4.学习体积单位(课件第7张)(1)怎样比较下面两个长方体体积的大小呢?
(一)复习旧知,导入新课。师:同学们,上节课我们认识了体积和体积单位,请你填一填这两道题,看看你学得怎么样。(课件第2张)1.常用的体积单位有(立方厘米)、(立方分米)、(立方米),可以分别写成(cm³) 、(dm³)、 (m³)。2.棱长是1cm的正方体,体积是(1cm³)。3.棱长是1dm的正方体,体积是(1dm³)。4.棱长是1m的正方体,体积是(1m³)。【设计意图】1dm³是多少cm³呢?这节课我们就来研究一下体积单位间的进率。(板书课题)(二)探究新知1.探究立方分米和立方厘米间的进率:(课件第3张)(1)下图是一个棱长为1dm的正方体,体积是1dm³。想一想,它的体积是多少立方厘米呢?(2)小组讨论,你是怎样想的?(3)汇报交流:(课件第4张)生1:如果把它的棱长看作是10cm,可以把它切成1000块1cm³的小正方体。10×10×10=1000.生2:它的底面积是1dm²,就是100cm²,100×10=1000,一共是1000cm³。1dm³=1000cm³【设计意图】用小组讨论的方式,让学生从讨论的过程中找到解决问题的方法,培养学生的语言表达能力、思维能力。2.你知道1m³等于多少立方分米吗?(课件第5张)生1:把棱长是1m的正方体,看作棱长是10dm的正方体,10×10×10=1000dm³。1m³=1000dm³。 生2:棱长是1m的正方体,底面积是1m²,就是100dm²,100×10=1000dm³,一共是1000dm³。生3:1m³=1000dm³ 3.整理计量单位之间的进率。(1)小组讨论:到现在为止,我们已经学习了哪些计量单位?请整理在表中。
【教学程序】(一)导入:1.听《乌鸦喝水》的小故事。2.揭题:师:你知道乌鸦是通过什么方法喝到水的吗?这蕴涵了什么道理?这就是今天我们要学习的新课题《体积单位》。(出示课题)(二)教学“体积单位”。师出示图,请生比一比谁的体积大?[说明:教师通过两个长方体体积大小的比较,学生发现不好比较,从而指出计量物体的体积要用统一的体积单位。从而引入“体积单位”的教学]师:为了更准确的比较图中这两个长方体体积的大小,我们可以把它们切成若干个同样大小的正方体,只要数一数,每个长方体包含有几个这样的小正方体,就能准确地比出它们的大小。请生数一数,告诉老师谁的体积比较大?学生汇报(注意让学生说出数的方法)。师:像计量长度需要长度单位,计量面积需要面积单位,我们计量体积也需要有“体积单位”。为了更准确地计量出物体体积的大小,我们可以像图中这样用同样大小的正方体作为体积单位。
1.要有充分的直观操作。学生思维的特点一般的是从感性认识开始,然后形成表象,通过一系列的思维活动,上升到理性认识。本课的教学采用直观操作法,是一个重要的环节。2.启发学生独立思考。学生是学习的主体,只有引导学生独立地发现问题、思考问题、解决问题,才能收到事半功倍的教学效果。3.讲练结合。4.充分运用知识的迁移规律,引导学生掌握新知识。教学过程:三、说教学过程:(一)、创设情境上课前,教师先给大家讲一个与今天的学习内容有关的故事,希望同学们认真地听、认真地想。故事是这样的:大象过生日啦!那天来了很多的朋友,有小兔、小猴等等等等,可热闹啦!在众多的朋友中只数小兔最高兴,它乐什么呢?原来它知道了蛋糕的分配方案,认为自己分的蛋糕比小猴的大。蛋糕是这样分配的:分给小兔的蛋糕是棱长10厘米的正方体,分给小猴的蛋糕是棱长1分米的方体。(分别出示两块同样大小的正方体,用10厘米和1分米表示它们的棱长)
第三十一条有下列情形之一的,甲方解除本合同,应根据乙方在甲方工作年限,每满1年支付乙方相当于甲方上年月平均工资1个月工资的经济补偿金,不满1年的按1年计算,如乙方解除本合同前12个月的平均工资高于甲方上年月平均工资,按本人月平均工资计发:(一)乙方患病或者非因工负伤,不能从事原工作也不能从事甲方另行安排的工作的;(二)本合同订立时所依据的客观情况发生重大变化,致使合同无法履行,经甲乙双方协商不能就变更本合同达成协议的;(三)甲方裁减人员的。第三十二条甲方向乙方支付的经济补偿金的计发标准不得低于北京市最低工资。
负责对合同标的物进行定期检查。租赁有效期内由不归责于乙方的原因导致屋面漏水、房屋裂缝由甲方负责维修并承担相关费用,以保障乙方安全和正常使用;由此对乙方造成的损坏和损失,甲方不负有修缮和赔偿的义务。
每年的5月31日,是“世界无烟日”。小小一支烟,危害千千万。那些看似惬意放松的“吞云吐雾”,其实正悄悄地吞噬着抽烟者和身边人的生命。据研究,一支香烟里含的化学物质——尼古丁可毒死一只老鼠,而一包香烟中的尼古丁能毒死一头牛,每天吸一包烟,再加上点燃香烟时产生的约5000种化学成分,足以让人得癌症,甚至是死亡。可见危害其大。队员们,你的家长有吸烟的吗?请举手。好,请放下。人好多啊。虽然,我们不吸烟,但是我们身旁有很多吸烟的人,如果我们就在这吸烟者的旁边,被动地闻到了烟雾,这就是俗称的“吸二手烟”,它对我们健康的危害非常大。首先,儿童身体处于成长期,抵抗力还很低,烟雾中有害物质残留体内很难排除,会使我们进食时产生恶心、厌食。
XX学年第一学期第15周国旗下讲话稿:无私奉献大爱无疆亲爱的同学们,老师们:大家好!今天我要演讲的题目是:无私奉献大爱无疆。奉献是什么?奉献是罗隐的“采得百花成蜜后,为谁辛苦为谁甜”;奉献是李商隐的“春蚕到死丝方尽,蜡炬成灰泪始干”;奉献是龚自珍的“落红不是无情物,化作春泥更护花”。奉献就是一种不求回报的给予,它既是一种高尚的情操,也是一种平凡的精神;既包含着崇高的境界,也蕴含着不一样的层次;既表此刻关键时刻挺身而出,也渗透在人们日常的工作和生活中。学会奉献,要有这样的精神。奉献不需要轰轰烈烈,只需要拿出你的一颗友爱之心。整天与我们朝夕相处的老师是无私的,是伟大的。“春蚕到死丝方尽,蜡炬成灰泪始干”就是对老师辛勤工作、无私奉献的高尚精神的最真实的写照。他们用澎湃的激情,耕耘着温馨的田野;用执着的热情,开垦着冷漠的荒原。
准备:丰富相关知识,每人一册图书过程:(一)、猜谜语,引起幼儿的兴趣。谜语:“不用手,不用斧,就能造出美丽的小茅屋。”(鸟巢)(二)、导入故事、激发兴趣1、出示四类鸟(山雀、老鹰、啄木鸟、火烈鸟)问问这些鸟你们认识吗?2、你喜欢它们吗?为什么?3、它们还是建筑师呢,它们建造的房子是怎么样的?大家想知道吗?让我们一起来看一下。
当孩子找来了许许多多不同的声音的时候,“声音是从哪里来的呢?”这个问题着实难倒了小班的孩子。“声音是从这里来的。”“声音是从那里来的。”说来说去也说不出个所以然来。因此,我觉得教师就是要抓住孩子最需要了解的点、最迫切想知道的内容作为自己的活动目标。于是,我选择了两种不同的形式,区角分组活动及正式活动来组成本次主题的学习活动。在区角中,我投放了大量不同的能发出声响的材料,供孩子摆弄。只见敏敏拿起一个奶粉罐子摇了摇,发现有声音,又拿起另一个同样的奶粉罐子摇了摇,也发出了声音,高兴得笑了!青青在一旁也学着她拿起这个瓶子摇两下、拿起那个罐子摇两下,一连拿了好几个,弄得教室里响声不断,笑声也不断。我引导说:“这个怎么会有声音的呢?”这时敏敏的一个举动引起了我的注意,只见她试图打开奶粉罐子,想要看看里面到底是什么?于是,孩子自己生成了学习主题——声音到底是哪里来的呢?
尊敬的各位老师,亲爱的同学们:大家好!我们每个人胸前都有一枚闪光的校徽,无论在什么地方,我们都有一种自豪感。校徽,虽然比不上漂亮的胸花,也比不上珍贵的奖章,但是,它代表着祖国和人民的重托,它代表着父母的期待,代表着老师的厚望,更代表着××人的一份责任。校徽,见证着××悠久的历史。从1925年起,××穿越了80多年历史的风云,一步步发展壮大,从这里走出了一大批学贯中西的专家学者,更有一大批国家政治、外交、军事、经济、科技、文学、艺术、体育等方面的杰出人才,他们有的已为祖国的解放事业光荣献身,有的正在为祖国的现代化建设努力奋斗。在××这片热土上,有老一辈革命家奋斗的足迹,有革命烈士流过的鲜血,也有几代××人洒下的汗水。戴陶、吕土奇烈士为祖国的解放事业血洒疆场;粟裕将军、黄逸峰先生曾在这里点燃革命的火种。可以说××校徽上印染着烈士的鲜血,××校园是革命斗争的摇篮。
尊敬的各位老师,亲爱的同学们: 大家好! 我们每个人胸前都有一枚闪光的校徽,无论在什么地方,我们都有一种自豪感。 校徽,虽然比不上漂亮的胸花,也比不上珍贵的奖章,但是,它代表着祖国和人民的重托,它代表着父母的期待,代表着老师的厚望,更代表着××人的一份责任。校徽,见证着××悠久的历史。从1925年起,××穿越了80多年历史的风云,一步步发展壮大,从这里走出了一大批学贯中西的专家学者,更有一大批国家政治、外交、军事、经济、科技、文学、艺术、体育等方面的杰出人才,他们有的已为祖国的解放事业光荣献身,有的正在为祖国的现代化建设努力奋斗。在××这片热土上,有老一辈革命家奋斗的足迹,有革命烈士流过的鲜血,也有几代××人洒下的汗水。戴陶、吕土奇烈士为祖国的解放事业血洒疆场;粟裕将军、黄逸峰先生曾在这里点燃革命的火种。可以说××校徽上印染着烈士的鲜血,××校园是革命斗争的摇篮。
一、依标扣本,说教材《清新空气是个宝》是《道德与法治》二年级下册第三单元中的内容,本单元的主题是“绿色小卫士”。本课时代气息浓厚,针对当下我国大气污染的严峻现实,引导学生理解清新空气对美好生活的重要意义,懂得清新空气需要靠大家一起共同遵守与环保相关的法律法规,从小处着眼,身体力行,形成绿色环保的生活方式。二、以人为本,说学情二年级学生以往接触最多的是垃圾分类、保护环境卫生、珍惜水资源等话题,对空气质量的关注与保护常被忽略。但近年来,空气污染加重,保护空气质量、减少空气污染成为每一个公民的义务。从对学生的调查来看,大多数学生不知道可以为保护空气质量做些什么,更不知道在空气污染的环境里如何自我保护。教学目标:1.了解空气污染的原因、危害及防治空气污染的方法,知道我们需要清新的空气。2.关心自己赖以生存的空气环境,并能提出净化空气、保护空气的建议。3.通过考察当地空气污染情况,认识到新鲜空气的重要性,养成保护环境的良好习惯。
一起聊天,而且我们军训时因为要喊出声音,教官怕我们喉咙不适服,特意给我们买了润喉糖给我们吃,而且怕我们晕倒,还给我们买个钙片吃,虽然她有时对我们很严厉,但她和小班们总是督促着我们吃饭,怕我们训练会晕倒。 走步时,我们走了一个下午,还是走不齐,但教官还是很耐心,到了很晚的时候,我们还是走不齐,教官怕我们饿肚子就让我们去吃饭。直到会操时,我们的动作变得很整,我们开始有了整体的感觉。
国旗下的讲话:新年新起点新希望尊敬的各位老师、亲爱的同学们:大家早上好!光阴似箭,岁月如歌。转眼间,我们即将告别难忘而辉煌的XX年,迈进令我们期待和憧憬的XX年。在新的一年即将到来之际,祝老师们新年快乐,身体健康,阖家幸福,工作顺利!祝同学们学习进步,茁壮成长,素质全面,成绩优良!今天我国旗下演讲的题目是《新年,新起点,新希望》。在XX年的日历上,有一个特别的日子——1月1日,这标志着华夏神州又增添了一道年轮,标志着时代的航船乘风破浪,伟大祖国又迎来了充满希望的一年。东晋诗人陶渊明曾有过这样的感叹:“盛年不重来,一日难再晨,及时当勉励,岁月不待人”。我们也不乏这种紧迫感。我们是青少年,青少年是生命中的春天,是早晨八九点钟的太阳。我们青少年更重要是读书,读书是一切成大事者的必由之路,是一切创造的基础。认真读书是时代的要求。
问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图
问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,
二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为