提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

2021年吉林省中考语文真题(含答案)(原卷版)

  • 人教A版高中数学必修一两角和与差的正弦、余弦和正切公式教学设计(1)

    本节课选自《普通高中课程标准实验教科书数学必修1本(A版)》第五章的5.5.1 两角和与差的正弦、余弦和正切公式。本节的主要内容是由两角差的余弦公式的推导,运用诱导公式、同角三角函数的基本关系和代数变形,得到其它的和差角公式。让学生感受数形结合及转化的思想方法。发展学生数学直观、数学抽象、逻辑推理、数学建模的核心素养。课程目标 学科素养1.了解两角差的余弦公式的推导过程.2.掌握由两角差的余弦公式推导出两角和的余弦公式及两角和与差的正弦、正切公式.3.熟悉两角和与差的正弦、余弦、正切公式的灵活运用,了解公式的正用、逆用以及角的变换的常用方法.4.通过正切函数图像与性质的探究,培养学生数形结合和类比的思想方法。 a.数学抽象:公式的推导;b.逻辑推理:公式之间的联系;c.数学运算:运用和差角角公式求值;d.直观想象:两角差的余弦公式的推导;e.数学建模:公式的灵活运用;

  • 人教A版高中数学必修一两角和与差的正弦、余弦和正切公式教学设计(2)

    本节内容是三角恒等变形的基础,是正弦线、余弦线和诱导公式等知识的延伸,同时,它又是两角和、差、倍、半角等公式的“源头”。两角和与差的正弦、余弦、正切是本章的重要内容,对于三角变换、三角恒等式的证明和三角函数式的化简、求值等三角问题的解决有着重要的支撑作用。 课程目标1、能够推导出两角和与差的正弦、余弦、正切公式并能应用; 2、掌握二倍角公式及变形公式,能灵活运用二倍角公式解决有关的化简、求值、证明问题.数学学科素养1.数学抽象:两角和与差的正弦、余弦和正切公式; 2.逻辑推理: 运用公式解决基本三角函数式的化简、证明等问题;3.数学运算:运用公式解决基本三角函数式求值问题.4.数学建模:学生体会到一般与特殊,换元等数学思想在三角恒等变换中的作用。.

  • 双曲线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图

  • 抛物线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④

  • 抛物线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,

  • 双曲线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为

  • 椭圆的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.

  • 椭圆的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.

  • 用空间向量研究直线、平面的位置关系(1)教学设计人教A版高中数学选择性必修第一册

    二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.

  • 用空间向量研究直线、平面的位置关系(2)教学设计人教A版高中数学选择性必修第一册

    跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.

  • 精编不忘初心牢记使命主题教育心得体会参考范文

    种树者必培其根,种德者必养其心。虽然我们只是一个普普通通的初中老师,但是对于我们的学生,每个学生就是一个家庭的希望和未来。初中阶段,对于一个孩子,是一个重要的基础阶段,也是一个学生世界观、人生价值观逐渐树立的重要阶段。我们给予他们的鼓励和知识,是他们重要的信心和基础。每个孩子成才,何尝不是一个家庭的幸福?每个孩子为社会做出贡献,何尝不是为中华民族谋复兴出力!所以,我们初中教师,看似位卑,实则伟大啊!历史重任在肩啊!

  • 小班主题 拜年啦课件教案

    2、总目标:通过相互拜年、分享食品、闹元霄等活动,进一步体会春节的欢乐, 了解中国特有的春节习俗,并能围绕春节主题大胆表述。3、领域目标: 社会:通过生动活泼的活动,初步了解春节的一些传统习俗,体验过新年的愉 快情绪,学习一些基本的拜年礼节。 语言:使幼儿乐意在集体面前说话,能用较完整的句子较连贯地围绕主题谈话。 科学:通过观察比较,判断1—9数量的多、少一样多,巩固对1—9数量的认识。 艺术:1、学习用废旧材料制作花灯。 2、学习从里外,由浅入深,层层涂染的方法表现焰火的形状和色彩。 3、引导幼儿感受乐曲“小看戏”的欢乐、诙谐的情绪,并通过整体模仿 动作,学习分声部打击乐器,学习“小锣”的演奏方法,并在集体中 保持演奏速度。 健康:学习新操。在游戏中练习一个跟一个向前走成螺旋形,提高幼儿变化队 形的能力。4、主题预设网拜年啦 5、教学活动 活动一:社会:我们去拜年 活动二:打击乐:小看戏(一) 活动三:谈话:压岁钱 活动四:绘画 礼花 活动五:科学 复习1—9数量 活动六:谈话 美丽的花灯 活动七:韵律活动 观花灯 活动八:手工 制作花灯 活动九:综合活动(半日活动)闹元霄 活动十:智游:化妆舞会 活动十一:打击乐:小看戏(二) 活动十二:健康:舞龙灯

  • 2023年上半年乡村振兴工作总结汇编(3篇)

    今年上半年,全市农林牧渔业增加值xx.xx亿元,同比增长x.x%;规上企业农产品加工产值xx亿元,同比增长xx.x%;农村常住居民人均可支配收入xxxx元,同比增长x.x%,增速高于全国平均水平x.x个百分点。采取的主要措施有,(一)守住“两条底线”牢牢守住保障国家粮食安全的底线。一是稳定粮油生产和保障“菜篮子”稳产保供。抓好x.x万亩双季稻轮作项目建设,将粮食规划xx万亩生产面积及产量目标分解到各乡镇、各村,并纳入乡镇年终考核。制定xxxx年双季稻轮作项目实施方案和油菜轮作试点项目实施方案,推广优良品种,推广玉米大豆带状复合种植,多措并举扩面积、提产量。上半年稳定瓜果蔬菜播种面积xx万亩。积极推进xxxxx头种猪联合育种科研基地、xx农牧科技有限公司生猪养殖基地等养殖项目。二是严格落实耕地保护制度。坚决守住xx.xx万亩耕地红线和xx.xx万亩永久基本农田保护红线,防止耕地“非粮化”和撂荒。在xx镇等xx个乡镇创建xx个千亩以上双季稻生产示范片,同时创建x万亩双季稻高产示范片,调动农户积极性。xxxx年度高标准农田建设项目完成总工程量的xx%,xxxx年度高标准农田建设项目已完成两轮现场踏勘,正在进行初步设计。三是强化农业科技和物质装备支撑。深入实施水利补短板强功能三年行动(xxxx-xxxx年),已完成xxxx年度任务投资xxxx万元,目前xxxx年度任务已完成招投标,即将开工建设。选聘xx市级个人科技特派员xxx人,法人科技特派员团队x个,每个团队x人。开展线下科技培训服务活动x次,培训服务人数xxx余人次。

  • 2023年工作总结和2024年工作思路汇编(7篇)

    4.营商环境不断优化。打造营商环境品牌。围绕市场服务、产业服务等七个方面提出多项攻坚举措,编制《无锡经济开发区2023年度优化营商环境提升行动方案》。根据省委第二轮巡视发现问题清单,组织各部门自查自纠并提出工作计划,进一步压实主体责任,发扬“店小二”精神,持续打造“无难事、悉心办”的营商环境品牌。落实各项政策,发放区级扶持资金X亿元,惠及企业超400家。开展为企服务活动。举办“企业家迎春座谈会”、“企业家协会成立大会”等活动,及时了解企业现状,优化政企沟通交流渠道,构建亲清政商关系。完善政企沟通机制,各项政策通过亲清在线进行公示,并通过建立工作群、园区专人负责指导等形式全方位宣传,各类惠企政策奖补范围扩大、认定门槛降低。此外成立“无难事、悉心办”锡企服务平台(惠企通)经开区工作协调推进小组,升级原有“惠企通”平台,建设“经开区锡企服务旗舰店”;组建“锡企小助手”团队,明确“首问应答员”“政策辅导员”“服务监督员”等业务骨干人员。提升信用服务水平。在帮助企业融资方面,经开区开展2023年度市场主体融资注册工作部署会议,发动各街道、各园区亲自帮扶,助力解决市场主体融资难、融资贵等问题,报送注册信息4109条。

  • 2023年工作总结和2024年工作计划汇编(10篇)

    截至11月,我镇强镇富村公司营业额已完成XX万的营业额,公司逐步迈入经营正轨。六是深入推进绿美广东生态建设。积极开展义务植树活动,组织全镇干部职工、志愿者开展义务植树2次,积极组织干部、群众开展“我为绿美韶关添新绿”认种认捐活动、“XX县古树名木认捐认养活动”等,以镇一把手负总责,分管领导具体抓,切实把我镇林长制“五进”工作抓紧抓实。七是抓好和美乡村建设及人居环境整治。稳步推进美丽乡村村庄提升建设工程、农村人居环境整治项目的后续结算工作,蓝田村、小溪村、古竹村3个行政村24个自然村,共投入资金XX万余元,主要进行农村污水处理设施、雨污分流、村卷道、垃圾收集点建设,目前工程已完成竣工验收,力争第四季度完成工程项目的结算事宜。积极推进农村无害卫生户厕改造工作,2023年新增无害化卫生户厕提升改造157户,已完成改造并通过验收合格3户,154户正在按相关程序申请改造,争取第四季度完成改造任务。持续开展农村“村庄清洁日”活动,进行“三清三拆三整治”,有效提升农村村容村貌。四是做好第四季度农村基础设施排查整改及督导工作。截至第三季度我镇共支出农村基础设施管护费XX元,其中集中供水管护XX元,污水设施管护XX元,基础设施管护XX元,通过管护确保农村基础设施正常运行。

  • 2023年工作总结及2024年工作计划汇编(5篇)

    (一)深入学习贯彻新时代中国特色社会主义思想主题教育坚持学习贯彻新时代中国特色社会主义思想作为全县民委成员单位当前和今后一个时期首要政治任务。把学习贯彻新时代中国特色社会主义思想与贯彻落实关于加强和改进民族工作的重要思想和对内蒙古的重要指示批示精神有机结合起来,与贯彻落实中央、自治区D委和市委、县委民族工作会议精神有机结合起来。制定学习计划,创新学习宣传方法和载体,每周通过线上线下学习2次,采取集体学习、学习研讨、专题讲座等多种形式,教育引导D员干部深学细悟、学懂弄通,将学习成效转化为民委工作的生动实践。(二)推进中华民族共有精神家园建设取得成效一是以铸牢中华民族共同体意识为主线,建立创建考核、动态管理、示范带动“三大体系”,积极争创全国民族团结进步示范县。健全完善创建指标和示范单位动态调整机制,研究制定了《和林格尔县民族团结进步示范单位命名管理办法(试行)》,支持和指导相关地区和单位争创复创全区、全市民族团结进步示范区(单位)。

  • 2024年上半年个人驻村工作总结(乡村振兴)

    四是多措并举,产业发展尽全力。始终把产业振兴作为帮扶工作重点,帮扶之初,引导驻村工作队积极通过实地调研、培训学习等方式,组织村“两委”、产业发展能人等,集中学习产业发展相关政策、技能,外出到周边产业发展示范村等地参观学习取经,让村“两委”干部学习到先进的生产技术和管理经验,帮助他们开拓眼界、打开思路、提升技能,结合村情实际及时制定产业发展规划,最终经过多方考量、征求意见,确定以种植大棚蔬菜、精品水果和油茶等经济作物的产业发展思路。同时,还组织园林维护干部到帮扶村宣传常见病虫害及防治知识,传授种植和修剪技能,帮助提升技能技术,高效发展产业,通过签订分红合同等方式,引导企业、合作社与农户建立“风险共担、农企双赢”的利益联结机制,促进农户共享稳定收益,实现集体增收、群众致富。截至目前,共争取到项目资金、物资xx余万元,帮助发展蔬菜等xx余亩,仅2024年上半年实现销售收入xx余万元,覆盖带动全村xx户脱贫户稳定增收。

  • 人教版新课标小学数学二年级下册两位数加两位数(口算)说课稿2篇

    (四)、课堂总结、体验成功引导学生对所学知识、学习方法、学习结果、情感等进行全面总结,让学生体验学习的成功感,同时,进一步系统、完善知识结构。总之,本课的教学设计力求体现“以学生为本”的教学理念,具体体现在以下几个方面:(一)、创设生动的情景,激发探索的乐趣,让学生感受数学与生活的联系。课的引入以一幅学生经常接触的,喜闻乐见的购买玩具这一题材为切入点。在练习设计中,改变枯燥抽象的数字计算练习,选取了一组寓有童趣的素材。它们以丰富多彩的呈现方式深深地吸引着学生,使他们认识到现实生活中蕴含着大量的数学信息,使学生感到有趣、有挑战性,激发他们好奇,好胜的心理,从而诱发他们去主动寻求解决问题的策略,同时体验到数学与生活的联系。

  • 人教版新课标小学数学三年级下册两位数乘两位数(进位)乘法说课稿2篇

    (一)创设情境,提出问题:学生的学习动机和求知欲不会自然涌现,它取决于教师所创设的学习情境,而兴趣是最好的老师,因此,在课的一开始,我设计了“今天我们再去街心公园看一看”这一情境:出示情境图:你看到了什么信息,你能提出什么数学问题?(板书)学生提出很多问题。设计意图:数学来源于生活,有趣的生活情境,激发学生好奇心和强烈的求知欲,让学生在生动具体的情境中学习数学,从而使教材与学生之间建立相互包容、相互激发的关系。让学生既认识了自身,又大胆而自然地提出猜想。(二)、探索新知解决问题“教师为主导,学生为主体,探究为主线”的三为主原则“保护环境”花坛一共用了多少盆花?怎样列式?

  • 小学数学人教版三年级下册《两位数乘两位数(进位)的笔算方法》说课稿

    一、说内容今天我说课的内容是人教版数学三年级下册第四单元的《两位数乘两位数(进位)的笔算方法》课本49页的内容。二、说教材本节课是在学生已经学习了两位数乘两位数的不进位笔算乘法的基础上进行教学的。学习这部分内容,有利于学生完整地掌握整数乘法的计算方法,为后面学习乘数数位是更多位的笔算乘法垫定基础。三、说教学目标根据这一数学内容在教材中的地位和作用,结合教材以及学生的年龄特点,我制定以下数学目标:1、知识目标:使学生经历探索两位数乘两位数进位笔算方法的过程,掌握两位数乘两位数进位笔算的基本笔算方法,能正确进行计算。2、能力目标:学生在自主探索计算方法和解决实际问题的过程中体会新旧知识间的联系,能主动总结归纳两位数乘两位数进位笔算的方法,培养类比分析概括能力,发展应用意识。

上一页123...123124125126127128129130131132133134下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!