提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

第二周国旗下讲话稿:励志勤学,走向成功

  • 说话要算数 说课稿

    说教材本课时的教学要点是引导学生分析失信的原因,找到解决的方法,并懂得和做到对自 己守信。数师可以按照教材内容的编排顺序进行教学,先设计讨论活动,引导学生针对具体的失信行为分析原因,井能对症下药,找出相应的解决方法,然后转向“对自己说话算数" 的内容。对此,教师可以通过数材中“张明对自己说话算数”的内容,引导学生思考并讨论 为什么要对自己守信,从而让他们认识到无论是对别人还是对自己都旻言行一致、说话算数.教师旻强调对自己说话算数主要靠自觉和白律,并让学生学习史多的守信方法,并运用在自己的守信实跋中。学情分析诚信对学生来说是老生常谈,在学校或是日程的生活中,老师、长辈总会要求孩子能做到诚实,不说谎。但实际上,很多孩子乱下保证,却常常做不到,导致失信,但在他们眼中这并不算是不诚信。因此我们需要在根本上改变他们的这一认识与看法。通过角色扮演在帮别人改正说话不算数的毛病过程中,自 纠身上存在的失信问题并改正。

  • 大班音乐《森林童话》说课稿

    说目标:幼儿学习音乐的目的是培养他们的审美感受,体验音乐带来的快乐。正如《纲要》中所说应支持幼儿富有个性和创造性的表达。因此我顶的能力目标:是根据人物特点,将音乐形象与故事中的人物形象相匹配。技能目标:是在音乐中大胆试用动作、表情等表现人物形象,体验表演的快乐。情感目标:是在活动中体验表演的快乐,通过表演,懂得不要轻信陌生人的道理。说重点:分析人物特点是本次活动的重点。说难点:听辨音乐,创编与人物相匹配的动作,是本次活动的难点。说准备:为了吸引孩子们的注意力,并对参与活动发生浓厚的兴趣,我在活动前进行了多方面的准备。1、森林的情景创设。2、课件(小红帽的故事)3、代表四个人物的音乐:《森林狂想曲》《天使小夜曲》《波斯市场》《拉德斯基进行曲》4、表演道具(红帽子、头巾、头饰、猎枪等)

  • 大班科学课件教案:传话筒悄悄话的故事

    基本部分: 1、请幼儿用手摸自己的喉咙,然后分别大声和小声说话看看有什么感觉吗?(多找一些幼儿说出他们的感受)师幼总结:大声说话,喉咙震动的就大,小声说话,喉咙震动的就小。 2、请幼儿用勺子敲敲瓷碗里面的水,分别轻轻敲,用力敲,看看用什么发现吗?幼儿回答完后师幼一起总结:轻轻敲碗,发出的声音小,碗里的水动的小;用力敲碗,发出的声音大,碗里的水动的也大。 师总结:哦,原来振动产生了声音,我们便听到了声音。 3、做律动“科学泡泡”调动幼儿情绪。 教师放电话铃声,然后接电话。(两个纸杯做的电话)教师装出很神秘的感觉,提高幼儿的兴趣。 a教师将范例电话发给幼儿让他们观察它的做法。然后把做电话的材料发给幼儿让他们和自己的好朋友一起合作制作一个电话。

  • 《花的学校》说课稿

    鼓励学生自读课文,划出生字词,标出小结,进行质疑。旨在引导学生对“课文中不理解的地方提出疑问”,引导学生抓住要点、抓住关键提出有价值的问题,这种质疑能力对学生的阅读水平的提高具有重要的作用。

  • 《小狗学叫》说课稿

    你见过小狗学叫吗?作者贾尼?罗大里编写新时代出版社出版一本书籍的题目就是——《小狗学叫》,经过改编后作文课文被编排进了三年级上册语文课本。也就是我们今天要学习的课文。

  • 《花的学校》说课稿

    教学目标:1.知识目标:会写本课生字,正确认读生字。正确、流利、有感情地朗读课文,默读课文,能对课文中不理解的地方提出疑问。2.能力目标:理解课文内容,体会课文富于童真童趣的语言和丰富细腻的想像,培养学生的质疑、表达、想象能力

  • 学做快乐鸟 说课稿

    尊敬的各位评委老师,大家好!我说课的题目是小学道德与法治二年级下册《挑战第一次》。下面我将从教材分析、学情分析、教学目标与重难点、教法与学法、教学过程、板书设计6个方面进行说课。一、教材分析《学做快乐鸟》是统编教材小学《道德与法治》二年级下册第一单元第2课,共有四个话题,本节课学习的是前两个话题《我很快乐》和《也有不开心的事》,主要是引导学生发现生活中的快乐,知道遇到不开心的事是生活中常有的事,学会面对、接纳生活中的不快乐,旨在引导学生过愉快积极的生活。二、学情分析二年级的孩子已经有了比较丰富的情绪体验,愉快积极的情绪在他们的生活中占主导地位,但生活中也有不开心的事,他们也得面对属于自己的烦恼。因此,要通过有效的教学,帮助引导学生形成健康、积极、乐观的生活态度。三、教学目标与重难点基于教材、学情的分析,以及对小学道德与法治课程的理解,我确定了本节课的教学目标与重难点。教学目标我确定了三个。1. 说出自己快乐的事,感受快乐带来的身心愉悦。2. 知道生活中也会有不开心的事,明白这是正常现象。3. 学会接纳生活中的不快乐。教学重点是:引导学生发现生活中的快乐,知道遇到不开心的事也是正常现象。

  • 同学相伴 说课稿

    尊敬的各位评委老师,大家好!我说课的题目是小学道德与法治三年级下册《同学相伴》。下面 我将从教材分析、学情分析、教学目标与重难点、教法与学法、教学 过程、板书设计 6 个方面进行说课。一、教材分析《同学相伴》是统编教材小学《道德与法治》三年级下册第一单 元第 4 课,共有两个话题,本节课学习的是第一个话题《同学相伴的 快乐》,主要是引导学生体会同学在一起共同游戏、共同生活中的快乐,旨在引导学生愿意与同伴在一起,体会乐群的意义。 二、学情分析三年级的学生在两年半的校园生活中,在与同学相伴方面,已经积累了较多的生活经验和体验,但他们还不能从理性上理解共同生活对于个体的意义。因此,要通过有效的教学,帮助引导学生体会同学相伴的快乐和乐群的意义。三、教学目标与重难点 基于教材、学情的分析,以及对小学道德与法治课程的理解,我确定了本节课的教学目标与重难点。教学目标我确定了三个。1. 体会同学相伴的快乐。2. 懂得同学相伴的重要性。3. 乐于在生活中与同学合作、分享。教学重点是:体会同学相伴的快乐和乐群的意义。难点是:体会共同生活对于个体的意义。

  • 学会尊重 说课稿

    尊敬的各位评委、老师,大家好,今天我说课的题目是《学会尊重》(板书课题)下面我将从说教材、说教法、说教学过程、说板书设计四个方面来对本课作具体阐述。一、说教材部编版六年级上册第一单元《完善自我,健康成长》以“养成交往品德”为主题展开,着重培养学生尊重、宽容、自省的美德,学生通过对三种道德规则的践行并不断塑造思想、道德、人格,完成个人的社会化过程,进一步融入社会公共生活之中。《学会尊重》是第一课的内容。尊重是中华民族上千年来的传统美德,是中华民族文化的积淀。它是一座桥梁,在人与人之间传递着信任与爱。每个人都有一定的自尊心,要想获得他人的尊重,必须先学会尊重他人。要做到人与人之间和谐相处,就从心怀“尊重自己、尊重他人”开始。学情分析道德与法治是以儿童社会生活为基础,促进学生良好品德形成和社会性发展的综合课程。本课教学对象是小学六年级的学生,已经具备搜集和整理资料的能力,能够用自己的方法筛选和整理资料。从学生的社会生活环境看,学生对于“尊重”有一定了解,能初步感受尊重对与人和谐相处的重要意义。但落实到日常的行为细节中,对于尊重自己、尊重他人还缺乏深入的思考,没有较深层次的理解。

  • 学会宽容 说课稿

    说教材本课是人教版道德与法治六年级下册第一单元第2课学会宽容的最后一个课时。本课旨在通过案例分析、活动体验等引导学生接纳不同、包容差异,同时也注重对前两课时的总结、应用与拓展。第二课的前两课时中涉及到的宽容的意义、限度和原则等,都为本课做了良好的铺垫。学情分析六年级学生不仅身体和心理迎来了新的发展高峰,而且社会性发展的,道德发展也进入了一个新的阶段,在这个新的成长时期中,帮助学生树立完善自我的观念,对学生的健康成长具有长久意义。六年级学生人际交往的范围已经从家庭、学校、社区扩展到了社会生活,已经初步具有一些与其他社会成员打交道的经验,对国内、国际事件也产生关注的兴趣。帮助其学习尊重、宽容的基本人际交往品质,有助于其更好的理解社会、融入社会。根据新课标和本课的教学内容与特点,结合学情,我设定了本课时的教学目标:1.懂得宽容的意义,养成友爱宽容的品质,进一步完善自我,促进健康成长。2.学会如何拥有一颗宽容的心,明白宽容但和而不同。能运用恰当的方法分析说明问题。为了落实本课时的教学目标,我将教学重难点设定如下:教学重点:懂得宽容的意义,学会如何宽容。教学难点:明白宽容但和而不同。

  • 学会反思 说课稿

    尊敬的各位评委、老师,大家好,今天我说课的题目是《学会反思》(板书课题 )下面我将从说教材、说教法、说教学过程、说板书设计四个方面来对本课作具体阐述。1、说教材本课是第一单元“完善自我 健康成长"的第3课,本课是在前 五年我的健康成长主题学习的基础上,聚焦反思。本课包括“生活离 不开反思"和“养成反思好习惯"两部分内容。教学时应从学生己有 知识经验出发,运用生动活泼例子、故事,让学生参加活动,在实践 中明白反思的重要性,从而学会反思的方法。学情分析本班多数学生养成良好的学习和生活习惯,对道德与法治这一学科很感兴趣。由于本班留守儿童较多,缺乏家庭教育,导致了少部分的学困生,这就要求教师加强对学困生的教育和引导,让他们尽快养成良好的学习习惯。根据新课标和本课的教学内容与特点,结合学情,我设定了本课时的教学目标:1.懂得反思的意义,养成反思的行为习惯,进一步完善自我,促进健康成长。2.学习从不同的角度反思自己。3.初步掌握收集、整理和运用信息的能力。为了落实本课时的教学目标,我将教学重难点设定如下:教学重点:懂得反思的意义,养成反思的行为习惯。教学难点:学习从不同的角度反思自己。

  • 在全市行政审批系统“政务服务大讲堂”活动启动仪式上的讲话

    一、开展“政务服务大讲堂”活动的出发点市县两级行政审批局自成立以来,广大干部职工从不同行业的不同岗位聚集在一起,围绕提高履职能力、圆满完成任务,采取了很多措施,下了很大功夫。在部分业务量较大、专业性较强的科(股)室,干部职工加班学习、加班工作已经成为常态。在大家的共同努力下,4年多来,市县两级圆满完成了夯基垒台、立柱架梁的阶段性任务,整支队伍的能力素质和工作成绩,得到了各级各部门和广大企业、群众的普遍好评。但是也要看到,行政审批局到目前为止,还是一个新单位,人少人新,事多任务重,业务工作面临的压力非常大。特别是随着“放管服”改革、“X办事一次成”改革深入推进,随着机构职能不断增加、任务不断增多,随着企业、群众对政务服务效能的期望值越来越高,全市行政审批队伍能力不足、业务不精的问题不断显露

  • 单位主要负责人在换届离任话别会上的讲话发言

    回首这5年,无论是大事要事、急事难事,都从件件不容易到最终能落地并交上满意的答卷,离不开大家的努力奋斗,5年来,全体乡村干部一起历经了多少次夜不成眠,绞尽脑汁;多少次苦口婆心,口干舌燥;多少次风雨兼程,奔波到村,我亲眼见证了全体乡村干部不畏艰难、负重前行的职业操守和特别能战斗、特别能吃苦、特别能奉献的精神。为了咱们××乡,我付出了人生最深厚的情感、最艰辛的付出,得到了最难得的历练、最全面的提升,也必将留下最难忘的记忆。

  • 初中数学鲁教版七年级上册《第五章 位置与坐标 1 确定位置》教学设计教案

    1、通过同位之间互说座位位置,检测知识目标2、3的达成效果。2、通过导学案上的探究一,检测知识目标2、3的达成效果。 3、通过探究二,检测知识目标1、3的达成效果。 4、通过课堂反馈,检测总体教学目标的达成效果。本节课遵循分层施教的原则,以适应不同学生的发展与提高,针对学生回答问题本着多鼓励、少批评的原则,具体从以下几方面进行评价:1、通过学生独立思考、参与小组交流和班级集体展示,教师课堂观察学生的表现,了解学生对知识的理解和掌握情况。教师进行适时的反应评价,同时促进学生的自评与互评。2、通过设计课堂互说座位、探究一、二及达标检测题,检测学习目标达成情况,同时有利于学生完成对自己的评价。3.通过课后作业,了解学生对本课时知识的掌握情况,同时又能检测学生分析解决问题的方法和思路,完成教学反馈评价。

  • 双曲线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图

  • 抛物线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④

  • 抛物线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,

  • 抛物线及其标准方程教学设计人教A版高中数学选择性必修第一册

    本节课选自《2019人教A版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习抛物线及其标准方程在经历了椭圆和双曲线的学习后再学习抛物线,是在学生原有认知的基础上从几何与代数两 个角度去认识抛物线.教材在抛物线的定义这个内容的安排上是:先从直观上认识抛物线,再从画法中提炼出抛物线的几何特征,由此抽象概括出抛物线的定义,最后是抛物线定义的简单应用.这样的安排不仅体现出《课程标准》中要求通过丰富的实例展开教学的理念,而且符合学生从具体到抽象的认知规律,有利于学生对概念的学习和理解.坐标法的教学贯穿了整个“圆锥曲线方程”一章,是学生应重点掌握的基本数学方法 运动变化和对立统一的思想观点在这节知识中得到了突出体现,我们必须充分利用好这部分教材进行教学

  • 双曲线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为

  • 双曲线及其标准方程教学设计人教A版高中数学选择性必修第一册

    ∵在△EFP中,|EF|=2c,EF上的高为点P的纵坐标,∴S△EFP=4/3c2=12,∴c=3,即P点坐标为(5,4).由两点间的距离公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求双曲线的方程为x^2/5-y^2/4=1.5.求适合下列条件的双曲线的标准方程.(1)两个焦点的坐标分别是(-5,0),(5,0),双曲线上的点与两焦点的距离之差的绝对值等于8;(2)以椭圆x^2/8+y^2/5=1长轴的端点为焦点,且经过点(3,√10);(3)a=b,经过点(3,-1).解:(1)由双曲线的定义知,2a=8,所以a=4,又知焦点在x轴上,且c=5,所以b2=c2-a2=25-16=9,所以双曲线的标准方程为x^2/16-y^2/9=1.(2)由题意得,双曲线的焦点在x轴上,且c=2√2.设双曲线的标准方程为x^2/a^2 -y^2/b^2 =1(a>0,b>0),则有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求双曲线的标准方程为x^2/3-y^2/5=1.(3)当焦点在x轴上时,可设双曲线方程为x2-y2=a2,将点(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的双曲线的标准方程为x^2/8-y^2/8=1.当焦点在y轴上时,可设双曲线方程为y2-x2=a2,将点(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦点不可能在y轴上.综上,所求双曲线的标准方程为x^2/8-y^2/8=1.

上一页123...225226227228229230231232233234235236下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!