展开。1.通过观看录像,了解非洲音乐与社会生活等方面的联系。要求:①仔细观察录像中所展现的内容,如:人们的服饰打扮、舞蹈动作,以及音乐与社会生活方面的联系等;②将所看到的内容记录在“音乐王国旅游护照”上。[培养仔细观察、整理信息的习惯和能力。] 2.出示课件:非洲音乐与社会生活方面的联系。[通过整理,加深印象。] 3.聆听鼓独奏《战士的舞蹈》,体会鼓的韵味,感受、探讨“鼓”在非洲音乐中所处的地位及其特点。[强化视听感受。] 用言简意赅的文字在“非洲音乐王国旅游护照”上记下对演奏乐器的印象和音乐风格特点的感受。听赏《战士的舞蹈》,共享组队(同桌二人组),探讨“鼓”在非洲音乐中所处的地位及其特点。分享、交换意见。[促进思维,加强合作探究。] 小结:鼓在非洲人民生活中的重要地位是任何其他乐器都无法比拟的,这是因为非洲音乐中最突出、最主要的因素是节奏,而鼓是非洲音乐节奏的基础,是表达音乐语言最重要的乐器之一。鼓不仅可以用于音乐,有时还是民族、部落或宗教和象征,甚至还可以传递各种信息。在非洲,不论是制造鼓的材料,还是鼓的形状,或是持鼓方式、演奏方式、演奏技巧等方面,都具有极其浓郁的民族特色。4.聆听西非现代歌舞曲《巴玛亚》(加纳),用言简意赅的文字在“非洲音乐王国旅游护照”上记下歌曲节奏和旋律的特点,以及演唱方式、伴奏和自我感受。[注重建立听觉印象。]
教学目标:1、通过对歌曲背景的了解,体味其中蕴含的深刻感情。2、有感情地歌唱这首歌曲。3、了解猫王和摇滚。教学重点:体味其中蕴含的深刻感情。教学难点:了解摇滚乐。教学准备:多媒体、课件、录音。教学过程:一、导入同学们,你们知道“猫王”吗?他是美国摇滚乐史上影响力最大的歌手,有摇滚乐之王的誉称。今天我们来欣赏她的一首歌曲。二、新课教学1、播放《温柔的爱》初次聆听,谈谈你的感受。2、简介歌曲来源及故事背景它是1956年美国影片《兄弟情深》的插曲,并由“猫王”普莱斯利担任配角和主唱。而1957年美国影片《情暖童心》上映时,又采用了这首歌作为该片的主题曲。3、介绍歌手20世纪50年代,猫王的音乐开始风靡世界。他的音乐超越了种族以及文化的疆界,将乡村音乐、布鲁斯音乐以及山地摇滚乐融会贯通,形成了具有鲜明个性的独特曲风,强烈的震撼了当时的流行乐坛,并让摇滚乐开始如同旋风一般横扫了世界乐坛。三、结束课后,同学们可以搜集电影《兄弟情深》,从而加深对歌曲的理解。
教学过程:一、导入:播放克莱德曼的钢琴曲《思乡曲》作为背景,结合图片,创设情境,谈话式导入新课。师:现在同学们听到的这首钢琴曲,旋律优美,略带忧伤,作者想表达什么呢?这首曲子名为《乡愁》,也被译作《思乡曲》。古今中外,思乡之情人皆有之,思乡之作举不胜举,很小的时候,大家都会吟诵“举头望明月,低头思故乡。”月亮仿佛成了思想的代名词,久别家乡的游子,仿佛能从月亮里看到家乡亲人的笑脸,看到自己童年的情景。月儿总是故乡明,无论身在何地,离开故乡的游子都会时刻挂念自己的家乡。今天的音乐课我们就来学唱一首带有思想情绪的歌曲《弯弯的月亮》。思考题:已知单线谱线上的音符唱“re”,你能推算出其他音符的唱名么?跟琴视唱声曲谱。这首短短的曲谱里蕴含着音乐家的思乡之情。老师这里也有一首小曲,一起来听听,请看大屏幕。【设计意图:传统的谈话式导入,借助音乐、画面、语言,创设情境。】二、歌曲教学:1、出示旋律图谱。2、学生在老师钢琴的引导下,用首调视唱曲谱,简单了解一个降号调的演唱,并用lu体会悠扬的思乡之情。3、教师设问:请同学们循环重复演唱这两句旋律,你们在唱的时候,还会听到老师不同的声音,我们来试试看。
教学过程:1、导入:(课前音乐:课堂里回荡着悠扬的歌声《小路》,学生在歌声中走进课堂。课前酝酿“乡间小路”的气氛。)(1)提问导入:同学们,你们了解校园民谣吗?你们听过的校园民谣有哪些呢?大家说了这么多,老师忍不住也想唱了,请同学们一起来和老师感受一下吧。师和音乐伴奏范唱《乡间的小路》。2、提问:你听到了什么,感受到了什么?能有感情的朗读出来吗?在萨克斯《归家》音乐声中有感情的朗诵《乡间的小路》,体会歌曲意境。歌词里所描写的景色多么迷人啊!你看“乡间的小路、暮归的老牛、蓝天、夕阳、云彩”,还有“牧童的歌声、笛声”,这一切都是那么的安详惬意,不管我们有多少的烦恼惆怅,只要走在乡间的小路上,它们都会随风飘散,消失得无影无踪。这么优美如诗、风光如画的歌曲,让我们再聆听一遍,请大家一边视听一边思考:歌曲可以分为几个部分?每个部分给你的情绪感受都是一样的吗?播放歌曲视频。3、新课:(1)欣赏歌曲《乡间的小路》,边听边用脚轻踩拍子,注意重拍。 a、歌曲所表现的内容是什么?情绪如何? b、歌曲的重拍在哪?是几拍子?(第二遍聆听)
教学过程:一、导入1、听《年轻的朋友来相会》,导入新课。今天,我们要学一首校园歌曲《校园的早晨》。二、歌曲简析、乐理、节奏1、三段式A8 + B12 + A142、反复跳跃记号3、弱位起音、切分音4、︱0ⅹ ⅹⅹ ⅹ ⅹⅹ∣ ︴ 0 ⅹ ⅹ ⅹ ⅹ ∣ 三、学唱歌曲1、我们一起来欣赏一下《校园的早晨》,听一听并思考:这首歌曲描述的是哪里的场景,表达怎样的情绪?2、有感情地朗读歌词。师:哪位学生用刚才这位同学所说的情感来读第一段歌词。 3、重点学唱第一段简单的练声出示歌谱示范歌唱第一段,边弹边唱。逐句教唱,讲授重点、难点乐句,并加强练习。师:因为我们这首歌是以校园生活为素材的,所以出现很多强位上的休止,使音乐显得活泼可爱。学生齐唱第一段,老师伴奏。 打节奏要清晰,打的声音不要太大。4、学唱第二段(1)分句指导歌唱(同上)。(2)重点练唱:有强位休止符的乐句;有切分音的乐句。(3)学生齐唱第二段,老师伴奏。5、学唱第三段(1)重点学唱最后一句,齐唱第三段。
教学过程一、创设情境导入。请全体同学闭上眼睛,播放贝多芬的第五交响曲《命运》第一乐章主部主题。师:我们刚才听的是什么乐曲,它渲染的是什么样的氛围?生:说明作者的一生也是多灾多难,并没有屈服。二、学唱歌曲,感受信念这双隐形的翅膀。1、初听歌曲(1)师范唱前面部分;(2)再听歌手演唱的歌曲。师:请同学听一听歌手张韶涵深情演唱的歌曲《隐形的翅膀》。听后说一说歌曲给你的感觉。(如旋律、节奏、声音等)2、用深情的语气朗读歌词,并说说给你印象最深刻的歌词。3、轻声跟琴学唱歌曲。师:让我们来学唱这首歌,近距离的感受一下歌曲里到底潜藏着什么秘密?师弹奏钢琴:(1)用字母wu模唱歌曲。(2)跟琴轻声学唱歌曲。4、授以歌唱的一些基本方法(气声唱法,高音的唱法,最后一句,休止符)。5、解决难点句,指导高音的唱法。6、完整而深情的演唱歌曲。7、为歌曲创编舞蹈(融汇手语与舞蹈),动员学生全体参与,并边歌边舞。8、抛出问题:什么事隐形的翅膀,导出下一环节。
在探究估算方法的时候,教师要注重适时的引导,以免让学生无从下手.在教学过程中一定要让学生体会估算的实用价值,了解到“数学既来源与生活,又回归到生活为生活服务”.(二)课堂评价的一些思考在教学中要多鼓励学生用自己的语言表达他们的想法,在估算的过程中多给予适当的引导和评价,让学生逐步把握估算的方法,找到解决问题的信心.比如对“画能挂上去吗”这个问题情境,学生可能提出不同的看法,有些学生可能认为可以挂上去,因为人还有身高,完全可以弥补梯子稳定摆放的高度和挂画位置的高度之间的差距,有些学生可能认为,人不可能爬到梯子的顶部,加上人如果本来比较矮,画就不能挂上去等等想法,教师都应该给予肯定,这样才能激发学生思考问题的热情,调动学生探究问题的积极性.作为教师,一定要尊重学生的个体差异,满足多样化的学习需要,鼓励探究方式、表达方式和解题方法的多样化.
一、情境导入上一节课我们做过:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a的大正方形,那么有a2=2,a=________,2是有理数,而a是无理数.在前面我们学过若x2=a,则a叫做x的平方,反过来x叫做a的什么呢?二、合作探究探究点一:算术平方根的概念【类型一】 求一个数的算术平方根求下列各数的算术平方根:(1)64;(2)214;(3)0.36;(4)412-402.解析:根据算术平方根的定义求非负数的算术平方根,只要找到一个非负数的平方等于这个非负数即可.解:(1)∵82=64,∴64的算术平方根是8;(2)∵(32)2=94=214,∴214的算术平方根是32;(3)∵0.62=0.36,∴0.36的算术平方根是0.6;(4)∵412-402=81,又92=81,∴81=9,而32=9,∴412-402的算术平方根是3.方法总结:(1)求一个数的算术平方根时,首先要弄清是求哪个数的算术平方根,分清求81与81的算术平方根的不同意义,不要被表面现象迷惑.(2)求一个非负数的算术平方根常借助平方运算,因此熟记常用平方数对求一个数的算术平方根十分有用.
1.细讲概念、强化训练要想让学生正确、牢固地树立起算术平方根的概念,需要由浅入深、不断深化的过程.概念是由具体到抽象、由特殊到一般,经过分析、综合去掉非本质特征,保持本质属性而形成的.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有必要的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.“讲清概念”就是通过具体实例揭露算术平方根的本质特征.算术平方根的本质特征就是定义中指出的:“如果一个正数 的平方等于 ,即 ,那么这个正数 就叫做 的算术平方根,”的“正数 ”,即被开方数是正的,由平方的意义, 也是正数,因此算术平方根也必须是正的.当然零的算术平方根是零.
一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球,则下列事件是必然事件的是( )A.摸出的4个球中至少有一个是白球B.摸出的4个球中至少有一个是黑球C.摸出的4个球中至少有两个是黑球D.摸出的4个球中至少有两个是白球解析:∵袋子中只有3个白球,而有5个黑球,∴摸出的4个球可能都是黑球,因此选项A是不确定事件;摸出的4个球可能都是黑球,也可以3黑1白、2黑2白、1黑3白,不管哪种情况,至少有一个球是黑球,∴选项B是必然事件;摸出的4个球可能为1黑3白,∴选项C是不确定事件;摸出的4个球可能都是黑球或1白3黑,∴选项D是不确定事件.故选B.方法总结:事件类型的判断首先要判断该事件发生与否是不是确定的.若是确定的,再判断其是必然发生的(必然事件),还是必然不发生的(不可能事件).若是不确定的,则该事件是不确定事件.
【新知识点】认识扇形统计图统计填写扇形统计图根据扇形统计图所提供的数据回答问题【单元教学目标】1,认识扇形统计图,了解扇形统计图的特点.2,能够看懂并会填扇形统计图.3,会根据扇形统计图所提供的数据回答一些简单的问题.4,进一步了解统计在实际生活中的地位和作用.5,通过对相关素材的整理和分析,使学生受到一定的思想教育.【单元教学重难点】重点:学生掌握扇形统计图的特点和作用.难点:在学习中体会各种统计图的不同特点.【教学建议】学生已经系统地学习过有关条形统计图和折线统计图的知识,也初步认识了扇形,而且也学习了有关百分数的知识,所有这些都为学校继续学习统计图的最后一部分内容——扇形统计图打下了良好的基础.【课时安排】
分别算出2008年比2007年各季度增产的百分数和合计数,再制成统计表.分析:根据题目要求,要算出各季度增产的百分数,我们只要根据2008年与2007年各个季度的原始数据,运用“求一个数是另一个数的百分之几”的方法就可以算出.算出了各个季度增产的百分数,根据题意制统计表时,既要按照季度分类,又要反映出年份的类别,所以在确定表头时可分为3部分:年份、台数、季度,年份又分为2007年产量、2008年产量、2008年比2007年增产的百分数.2、田力化肥厂今年第一季度生产情况如下:元月份计划生产1500吨,实际生产1620吨;二月计划生产1600吨,实际生产1680吨;三月份计划生产1640吨,实际生产1720吨,根据上面的数据,算出各月完成计划的百分数,并制成统计表.(1)制作含有百分数的统计表时,百分数这一栏一定要写清楚是谁占谁的百分之几,并按“求一个数是另一个数的百分之几”的解题方法正确算出对应百分数”
根据题意,得34%x-18%x=160,解得x=1000.所以48%x=48%×1000=480(公顷),18%x=18%×1000=180(公顷),34%x=34%×1000=340(公顷).答:玉米种了340公顷,高粱种了180公顷,水稻种了480公顷.方法总结:从扇形统计图中获取正确的信息是解题的关键.语文老师对班上学生的课外阅读情况做了调查,并请数学老师制作了如图所示的统计图.(1)哪种书籍最受欢迎?(2)哪两种书籍受欢迎程度差不多?(3)图中扇形分别表示什么?(4)图中的各个百分比如何得到?所有的百分比之和是多少?解:(1)科幻书籍最受欢迎,可从扇形的大小或图中百分比的大小得出.(2)科普书籍和武侠书籍受欢迎程度差不多,可从图中扇形大小或图中所标百分比的大小得出.(3)图中扇形分别代表了最喜欢某种书籍的人数占全班人数的百分比.(4)用最喜欢某种书籍的人数比全班的总人数即可得各个百分比,所有的百分比之和为1.方法总结:由扇形统计图获取信息时,一定要明确各个项目和它们所占圆面的百分比.
1、课本第14页的”做一做”。通过练习,一方面是让学生用刚学到的知识进行改写,进一步巩固了新知;一方面回忆过去提供的有关地理知识素材,使学生了解我国的地理知识,扩大视野。2、课本练习二的第3题。第3题的素材介绍了我国主要的农产品,可以扩大学生的知识面。在改写之后还要求学生进行大数的比较,对两部分知识进行混合练习。3、课文练习二的第4~5题。第4题是关于近似数的联系,通过准确数与近似数的对比,区分联系,题会在什么情况下使用准确数,在什么情况下使用近似数,使学生进一步理解近似数的含义和在实际生活中的作用。第5题是关于我国第五次人口普查中6个省份的人口数。让学生求出这些数的近似诉,并提示学生在可能的情况下通过互连网等媒体了解其他地区的人口数。同时还介绍了我国每十年进行一次人口普查的知识。
课程:数学课题: 3.1.1函数的概念课型:讲授课课时:2课时授课班级:2015级南口班授课时间:2016年3月1日授课地点:南口校区教 学 目 标知识目标1.能用函数语言描述图像、解析式中自变量与函数值的依赖关系; 2.会计算函数的定义域,理解值域的含义 3.会用语言表述自变量与函数值间的对应关系能力目标通过对实例的分析,培养学生的观察能力,抽象概括及逻辑思维能力 通过计算函数的定义域,培养学生的计算能力素养目标函数概念的思想蕴含了很多数学思维,也渗透生活中及其他学科范围内,通过学习使学生认同函数的抽象性。教学重 点理解函数的概念教学难 点判断两个函数是否相同教学方 法引导启发,讲练结合教学资 源演示文稿板 书 设 计3.1函数的概念 设集合A、B为非空数集,对于确定的对 应法则f下,在集合A中取定任意一个数x, 在集合B中都有唯一确定的数f(x)与之相 对应,则称f:A→B为集合A到集合B的一 个函数. 记作:y=f(x),x∈A X叫自变量,y叫函数值,集合A叫函数的 定义域,所有函数值组成的集合叫值域。
【教学目标】知识目标:⑴ 理解函数的单调性与奇偶性的概念;⑵ 会借助于函数图像讨论函数的单调性;⑶理解具有奇偶性的函数的图像特征,会判断简单函数的奇偶性.能力目标:⑴ 通过利用函数图像研究函数性质,培养学生的观察能力;⑵ 通过函数奇偶性的判断,培养学生的数学思维能力.【教学重点】⑴ 函数单调性与奇偶性的概念及其图像特征;⑵ 简单函数奇偶性的判定.【教学难点】函数奇偶性的判断.(*函数单调性的判断)【教学设计】(1)用学生熟悉的主题活动将所学的知识有机的整合在一起;(2)引导学生去感知数学的数形结合思想.通过图形认识特征,由此定义性质,再利用图形(或定义)进行性质的判断;(3)在问题的思考、交流、解决中培养和发展学生的思维能力.【教学备品】教学课件.【课时安排】3课时.(90分钟)【教学过程】
创设情景 兴趣导入问题 观察钟表,如果当前的时间是2点,那么时针走过12个小时后,显示的时间是多少呢?再经过12个小时后,显示的时间是多少呢?.解决每间隔12小时,当前时间2点重复出现.推广类似这样的周期现象还有哪些? 动脑思考 探索新知概念 对于函数,如果存在一个不为零的常数,当取定义域内的每一个值时,都有,并且等式成立,那么,函数叫做周期函数,常数叫做这个函数的一个周期. 由于正弦函数的定义域是实数集R,对,恒有,并且,因此正弦函数是周期函数,并且 ,, ,及,,都是它的周期.通常把周期中最小的正数叫做最小正周期,简称周期,仍用表示.今后我们所研究的函数周期,都是指最小正周期.因此,正弦函数的周期是.
《纲要》明确指出:教育内容应“贴近幼儿的生活来选择幼儿感兴趣的事物和问题,有助于拓展幼儿的经验的视野”,幼儿园数学教育不是为纯粹的教育而教育,是一种以幼儿生活为特征的教育,这就要求我们要立足幼儿的生活实际,紧密联系幼儿的生活来开展教育。像我班小朋友午睡起床,常有孩子把鞋子、袜子拿错、穿反。根据小班幼儿年龄特点,我设计了以鞋子、袜子、鞋垫为活动材料的《找朋友》数学活动,引导孩子在原有的生活经验上关注物体的形状、大小、颜色的不同,进行配对。在游戏中自然渗透数学的概念,达到“玩中学,玩中教”的目的。活动的目标对活动起着导向性作用,根据本班幼儿的年龄特点和实际情况,确立了情感、能力等方面的目标.其中有探索认知部分,也有操作部分,具体目标是:1、认识目标:(1)、初步形成“双”的概念,知道一双有两只。(2)、能按鞋子、袜子、鞋垫的外形,颜色,大小等特点进行配对。2、能力目标:发展幼儿的观察力、记忆力、创造力和想象力。3、情感目标:体验与教师、同伴游戏的快乐;初步感受改编儿歌的乐趣,从而激发幼儿的求知欲。
教学目标:1.让学生自主探索小数加、减法的计算方法,理解计算的算理并能正确地进行加、减运算及混合运算。2.使学生理解整数运算定律对于小数同样适用,并会运用这些定律进行一些小数的简便计算,进一步发展学生的数感。3.使学生体会小数加、减运算在生活、学习中的广泛应用,提高小数加、减计算能力的自觉性。教学重难点:(一)理解小数加、减法的算理,掌握其计算法则是教学重点.(二)位数不同的小数加、减法计算,是学习的难点.第一课时教学目标:1、让学生生自主探索小数的加、减法的计算方法,理解计算的算理并能正确地进行加、减及混合运算。2、使学生体会小数加减运算在生活、学习中的广泛应用,体会数学的工具性作用。3、激发学生学习小数加减法的兴趣,涌动长大后也要为国争光的豪情,提高学习的主动性和自觉性。
教学建议:亿以内数的读法是在万以内数的认识基础上进行教学的,主要是让学生用已有的知识去类推,所以在教学本课时我们有必要对万以内数的认识进行有针对性的复习。如可采用口答形式复习数位顺序及各数位之间的十进关系。对于万以内数的读法,可以出示一组数据如:2005年路桥区前两个月共实现农林、渔业总产值17013万元,其中农业产品6383万元,林业产值94万元,渔业产值7560万元。在对万以内数复习的基础上我们再出示第2页主题图,让学生读一读画面上呈现的6个大数,也可以让学生说说身边听到,看到的大数。在这环节中我们就让学生凭着自己的理解运用旧知识去读数。这里学生肯定会造成认知上的冲突,从而引入新课教学。新课时可以按以下环节进行:1、计数器操作,认识计数单位用计数器数数,拨上一万,然后一万一万地数,一直数到九万后,再加一万是多少?认识十个一万是十万,用同样的方法,完成一百万,一千万,一亿的认识。