二、探究新知一、点到直线的距离、两条平行直线之间的距离1.点到直线的距离已知直线l的单位方向向量为μ,A是直线l上的定点,P是直线l外一点.设(AP) ?=a,则向量(AP) ?在直线l上的投影向量(AQ) ?=(a·μ)μ.点P到直线l的距离为PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.两条平行直线之间的距离求两条平行直线l,m之间的距离,可在其中一条直线l上任取一点P,则两条平行直线间的距离就等于点P到直线m的距离.点睛:点到直线的距离,即点到直线的垂线段的长度,由于直线与直线外一点确定一个平面,所以空间点到直线的距离问题可转化为空间某一个平面内点到直线的距离问题.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是C1C,D1A1的中点,则点A到直线EF的距离为 . 答案: √174/6解析:如图,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.
问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.
二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.
再过一天,就是“六一”儿童节了,那是个充满幻想的日子,那是个令世界少年儿童欢欣鼓舞的日子。这一天,阳光格外艳,天空格外蓝,花儿格外香,笑声格外甜,欢乐将洒满了整个校园。因为六月一日是我们共同的节日!看啊,同学们的文艺演出多精彩;听呀,节日的歌声唱得多么动人;乐吧,节日里的安排又是多么丰富多彩……又一个盼望已久的“六一”节就要到了,她象一个小姑娘,穿着五彩的霞衣,手捧着鲜花,沐浴着六月的风,踩踏着六月的雨,轻轻地,向我们走来了。我不禁陷入了美妙的遐想之中,和同学们构思着一幅幅属于同学们节日图画。“六一”节那天,大家会相聚一堂,一起表演,一起欣赏节目,一起玩有趣的游戏,有说有笑,就算是往日被风吹散的沙子,这时也会随着笑声聚集起来,从此大家都会和睦相处。今天的同学们多幸福呀!在父母的怀抱里一天天长大,享受着亲人们无微不至的关怀;在老师慈祥的目光里一天天成长,感受着老师们亲切和蔼的教诲。在爱的海洋里,同学们不要辜负祖国母亲的培育,要无愧于我们伟大的时代,好好学习,天天向上,做建设祖国的栋梁。
同学们,每个人都是世界的一员,怎样面对美丽的生命,幸福的生活?当你背上书包,高高兴兴的上学时,你是否想到了还有许多和你同龄的孩子正在为上不起学而泪水涟涟?当你吃着可口的饭菜时,你是否想起那可怜的卖火柴的小女孩和那可怜的凡卡;当你坐在明亮的教室里上课时,你是否会意识到我们今天的幸福来之不易,刘胡兰、小萝卜头,多少位正值妙龄的儿童带着对今天幸福生活的向往在昨天牺牲了!
尊敬的老师、亲爱的同学们:大家早上好!今天,我在国旗下演讲的题目是“做好准备、迎接第一次月考”。在这飘散着青草芳香的阳春三月。高三的学长、学姐们,为了心中的高考目标,又一次蓄势待发、做足了一切准备,准备迎接第二次模考。高二、高一的同学们在经历了一个月,新鲜、紧张的学习后,为了证明优秀的自己,检验走班制学习的效果,也要面对新学期的第一次月考了。良好的开端是成功的一半。如何才能做好准备,在考试中展现自己的实力呢?第一、合理安排时间、注重学习效率。只有课堂上跟上老师的节奏,认真听讲。课后才能有充足的时间去复习消化。有的同学把熬夜当成了家常便饭,不仅影响了身心健康,而且第二天上课时变成了“睡仙”、一睡不醒。这种事倍功半的学习方法、效率肯定不会高。
(1) 讨论——选择。教师精心安排了两个环节,一是让学生讨论、选择一个喜欢的分数作为研究对象,二是让学生讨论、选择不同的实验材料,确定不同的验证方法,然后全班汇报。教师给每组准备了一个材料篮,里面装着计算器、钟表、数张纸、线段图、彩笔、直尺等。各小组经过热烈的讨论标新立异地选择了不同的分数作为研究对象、选择不同的材料作为实验器材,一个个跃跃欲试。学生可能会选择折纸涂色、画线段图、用计算器计算、看直尺、看钟面等不同的方法去证明两个分数是否相等。设计意图:这样设计,既是为后面的实验做好准备,避免学生出现盲目行动,同时也是为学生探究方法的多元化创造条件。(2)实验——记录:各组拿出实验报告,开始做实验,并记录实验结果。(3)汇报——交流:分组在实物投影仪上,展示实验报告,说明验证方法。学生可能会出现多种多样的实验报告。(投影)
四、教学过程1、情景引入首先,利用精美课件“购物情景”引入:上衣每件65元,裤子每条35元。问题:①买5件上衣和5条裤子,一共要付多少元?问题:②买5套这样的衣服,一共要付多少元?这样引入目的在于创设一个充满趣味的问题情境,使学生认识到现实生活中蕴含着大量的数学信息,并主动积极的带着自己的知识背景、活动经验和理解走进课堂。2、解决问题,感知规律(1)让学生合作完成,男同学解答问题①得到65×5+35×5=500(元)。女同学解答问题②得到(65+35)×5=500(元)(2)通过分析,两个问题实际上是一样的,两个算式应该相等。即:65×5+35×5=(65+35)×5。(3)新课标强调要让学生经历、体验知识获得的过程,主动参与探索,从而发现规律。在学生独立解答的过程中,我会重点引导学生感悟问题①和问题②的共同特征:买了同样的衣服,体会规律形成的过程。3、检验规律,建立模型
2、课标要求对于本节课内容课标要求:探索并掌握两个三角形全等的条件;注重所学内容与现实生活的联系,注重经历观察、操作、推理、想像等探索过程。初步建立空间观念,发展几何直觉;在探索并掌握两个三角形全等的条件,与他人合作交流的过程中,发展合情推理,进一步学习有条理的思考与表达。二、学生分析 1、七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,激发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要不断创造条件和机会,让学生发表见解,充分发挥学生学习的主动性,体现学生的主体地位。
二、说教法学法根据本节课教学内容和学生的思维特点,新课程标准的基本理念就是要让学生“人人学有价值的数学”。强调“教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程”。为实现教学目标,有效地突出教学的重点,突破难点,依据现代认知科学理论,我主要运用以下几种教法和学法,在教学中,我主要采用创设情景法,引发学生学习的兴趣和学生学习的积极思维的动机。教师精讲,学生多练,体现了学生主体,教师主导的教学原则。教学相长,我主要采用自主探究,合作交流的学习方法。动手操作,自主探求与合作交流是学生学习数学的重要方式,遵循了学生的认知思维规律,可以充分调动学生的主动性和积极性,给学生较大的空间进行探索性的学习,让他们在具体情景中进行独立思考。
3、认识正画、上面、右面。为了培养学生的自主学习能力,在这一活动中,首先我与学生交谈:“同学们,你们知道吗,刚才我们看到的物体的三个面都有自己的名字。”然后大胆放手,指导学生阅读教材,寻找答案;接着通过指认长方体纸箱、讲桌及班级中可能有的长方体物品的三个面加以理解,最后变换某一物品的摆放方向,请学生再次指认各面,使学生明白所谓的“正面、右面、上面”是会发生变化的。三、巩固练习,深化认识重视生活应用,让学生实践数学,学以致用是数学教学的一个重要原则。针对这一原则,在这个环节中,我安排了一组梯度式练习题:巩固深化题。教材26页的“连一连”、27页“练一练”中的1、3题;实际应用题。看图猜物、小小摄影师;课外延伸题。鼓励学生回家后与家长一起观察生活中的一件物体,试着把看到的形状画下来,结合着画为家长讲一讲本节课学到的知识。
一、说教材主要内容新北师大版第三章第三节二、说教材分析学生通过对本节内容的分析认识,感受数学教学内容分析1、说教学主要内容结合具体情境,在解决实际问题的过程中体会加减混合计算与实际生活的联系,感受数学在实际生活中的作用。2、说教材编写特点这节课在本单元中是新课的第三课,知识点更难,它的内容更加贴近生活,能够让学生结合具体的情境,灵活运用不同的方法解决生活中的简单问题,并能对结果的合理性进行判断,使学生感受到学习数学的意义和价值,激发学习数学的兴趣。3、说教材内容的核心数学思想让学生能够根据具体情况,灵活运用不同的方法解决生活中的简单问题,并能对结果的合理性进行判断。
【一、说教材】《蚂蚁做操》是北师大版数学三年级上册教材第六单元《乘法》第52页的内容。在此之前,学生已经学习了表内乘法,并学会了整十、整百数乘一位数的口算方法,这为过度到本课的学习起到了铺垫的作用。因此,本课题的理论、知识是学好以后课题的基础,也是本单元的起始课,它在整个教材中起着承上启下的作用。根据本教材的结构和内容分析,结合着三年级学生的认知结构及其心理特征,我制定了以下的教学目标:1.通过“蚂蚁做操”具体情景图,探究并掌握两、三位数乘一位数(不进位)的计算方法,并能正确计算。2.借助点子图直观模型,理解乘法竖式的每一步含义,进一步体会乘法计算的多样性。3.在交流各自算法的过程中,学会表达自己的想法,逐步养成认真倾听、善于思考的好习惯。
3、根据这样结果,请你估计一下自己的腰围大约是多少厘米,同桌合作量一量。这一环节的量:在量腰围、头围的实践活动中,让学生自主选择测量的工具和方法,并在小组交流中说一说测量的过程。活动形式也灵活多样,可以一个人单独操作,也可以小组合作完成,只要能测得结果,都给予肯定,而且测量的内容也是生活中常见的。最后,完善认知,统一方法。结合实际操作使学生知道可以有不同的起点,但只能描一周,巩固周长的含义,培养学生的操作技能。4、小结。通过前面的学习,老师发现同学们善于观察、爱动脑筋,所以想邀请你们参加下面的闯关比赛,想参加吗(四)闯关训练,深化新知。第一关:用彩色笔描出下面图形的边线。
一、教材分析:《小熊购物》是北师大版三年级上第1单元的第一课时,本单元学习内容是在学生学习了加、减、乘、除法的基础上进行的,这是学生第一次接触两步运算题,教材不是以单纯学习计算法则的形式出现,而是通过“小熊购物”主题图呈现生活情境,将教学内容和解决问题过程有机结合,教材列举了用分步算式和综合算式得出结果,在综合列式方法中,出现了两种情况:一种是将乘法放在前面,另一种则将乘法放在后面。这样做的目的是为了让学生了解在加法和乘法的综合算式中,无论乘法在前还是在后,都要先算乘法,再算加法。二.学情分析:学生已经掌握表内乘法,能熟练地进行加、减、乘、除法的运算,并具备提出简单问题和解决问题的能力,这些都是学生学习本课知识的前提和基础。从学生熟悉的购买商品的事例中,由直观到抽象,层层深入,经过动脑想、动笔算,抽象出混合运算的意义及运算顺序。
(三).实践应用,拓展延伸首先出示一个基本练习题,让学生独立计算,再抽几题说说口算方法,教师适时点拨,目的在于巩固本节课的教接下来解决实际问题,学生先独立解决第一小题,然后组织交流。第二小题,先让学生同桌讨论,再全班汇报交流,鼓励学生说出不同的思考方法。此处,注意数学与生活联系,学生通过自主选择内容,使不同的学生学习不同的数学,能用数学知识来解决实际问题,培养学生的应用能力。有了前面的基础,又对知识进行拓展延伸。这样一道解决日常生活中的实际问题,培养学生自觉运用数学知识解决问题的意识,提高了学生的应用意识,加深了对知识的掌握,同时又拓展了学生的思维,在此也渗透了德育教育。关于填表这个练习题,先让学生独立填表,教师注重对个别学生填表方法的指导和帮助,再反馈交流。
3、情感目标:通过长方形和正方形周长计算公式的推导过程,培养学生的探索精神和合作精神。三、说教学重点、难点、关键点。本着课程标准,我在认识了本节课教材在整个知识结构中所处的地位,考虑学生认知情况的基础上,我确立了如下教学重点、难点、关键点。教学重点:推导、归纳长方形和正方形周长的计算公式。教学难点:理解并掌握长方形、正方形周长的计算方法。教学关键点:让学生在自己的计算和解决问题的过程中体会和理解算法。四、说教法。依据学生的认知规律,本节课的教学方法中力求体现以下几个方面的理念:从学生爱听的故事出发,为学生创设探究学习的情景;联系生活实际,让学生体会数学与生活的联系;改变学生的学习方式,运用合作学习,培养学生的协作能力;主要采用:创设情境引入新课、师生互动探讨新知、引导学生总结、点拨学生迷惑等教学方法。
(四)引导观察,发现规律1.解决的问题(1)观察发现分数的基本性质(2)培养学生观察--探索--抽象--概括的能力。2.教学安排(1)提出问题:通过验证这两组分数确实相等,那么,它们的分子、分母有什么变化规律呢?(2)全班交流:不论学生的观察结果是什么,教师要顺应学生的思维,针对学生的观察方法,进行引导性评价①观察角度的独特性②观察事物的有序性③观察事物的全面性等。(注意观察的顺序从左到右、从右到左)引导层次一:你发现了1/2和2/4两个数之间的这样的规律,在这个等式中任意两个数都有这样的规律吗?引导学生对1/2和4/8、2/4和4/8每组中两个数之间规律的观察。引导层次二:在1/2=2/4=4/8中数之间有这样的规律,在9/12=6/8=3/4中呢?引导层次三:用自己的话把你观察到的规律概括出来。