《小狗学叫》这篇童话通过拟人的手法,叙述的是一只小狗学叫的故事。构思新颖,想象丰富,作者的情思寄寓在形象的描写中,耐人寻味。故事读起来看似有点荒诞无稽,但细品之后谁也不会去怀疑和谈论故事的真实性,而是深刻地思考品评故事所暗示的“小狗终于做成真正的狗,找回迷失的自我”的主题。作者曾经说过:“在每一件事物中都有一个故事,这些故事在桌子的木头中,在玻璃中,在玫瑰中……” 《小狗学叫》正是以现实生活为基础,在每一件事中挖掘故事,把现实世界的偶然现象和必然因素统一起来,把故事情节的曲折变化和人物性格的逻辑发展结合起来,通过这一高超的艺术辩证法,幽默地展示出现实社会中的某些现象,使人们在笑声中受到教育和启发。我们可用多媒体课件等形象的教学手段,拉近学生与文本之间的距离。
二、教学重难点: 帮助家长掌握一定的与孩子共同成长的方法与实施技巧,并能在实际的家庭教育中灵活、有效地运用。 三、教学方式: 互动探究 四、教学准备: 1、进行相关调查及数据统计 2、请几位某一方面做得好的家长作好简单的3分钟以内的发言准备 3、制作好多媒体课件 五、教学过程: (一)情景启思 切入主题 尊敬的各位家长,首先请大家看一个场景: 1、多媒体播放场景。 场景的大致内容如下:
1、使学生了解学习本单元的意义,歌颂爱心,培育爱心。 2、能自主学唱歌曲并设计歌曲的演唱情绪,力度等;合唱时声部和谐、声音优美。 3、能注意歌曲中段落的划分,并通过歌声表达出来。 【教学过程】 导入 1987 年的中央电视台春节联欢晚会上来了两位客人,一位是善良的家庭女主人,一位是身患白血病的小保姆,姑娘在女主人和邻里的关怀、帮助下战胜了病魔,他们共同述说着这一动人的故事,随即《爱的奉献》歌声响起,感动了在场的观众和所有的电视观众,歌曲中的"只要你献出一点爱,世界将变成美好的人间"早已唱遍了了全国。
一、 引入课题1、 将准备好的玉米棒、贝壳或仙人球实物带入课堂,然后开始组织教学,激发学生学习动机。课堂用语:老师现在要拿一些很棒的东西给大家看:“这是什么东西?”你们可别小看这些东西哦,知道吗?世界上有些非常著名的建筑还是模仿他们的样子设计出来的呢!2、拿一种实物出来提问,了解模仿它的原因(从实物的外形、结构特征和色彩去分析)。
二、第一部分: (自我介绍)同学们,进入美术教室有一种装修一新的感觉,但你觉得美术教室还缺少点什么吗?就这个小问题展开讨论。 (以几个人自由组合的方式进行讨论 1、如何进一步整体地美化我们的美术教室? 2、针对一扇窗、一扇门、一堵墙或整个教室进行装饰。 3、完成具体作品的讨论。(布置工作:两周内,以组的形式,自由布置好美术教室。即时评奖)
教学过程 :一、情景设置。欢迎大家来到音乐殿堂,今天我们将会继续快乐的音乐之旅。不知音乐小使者今天又会带我们到什么地方去呢?让我们一起来看一看。小使者:同学们,你们好啊,我们又见面了。今天我将会带大家到一个好玩的地方去,可是呀,想到那里必须先完成几个小任务,什么任务呢?下面让我们来观看一个录像片段,请大家在影片中找答案。二、欣赏影片,导入新课。师:同学们,通过观看影片,你们猜出小使者要我们完成的任务是什么了吗? 师:原来,音乐小使者看见我们学校竖笛队的哥哥姐姐们这么棒,想让我们向他们学习吹竖笛呢!那就让我们来看看第一个小任务的具体内容是什么吧。三、新课教学以完成音乐小使者的任务为线索,进行竖笛教学。1、任务一:复习学习过的“do”、“re”、“mi”、“fa”四个音。(1)空笛练习“do”、“re”、“mi”、“fa”四个音的指法。(2)空笛练习“do”、“re”、“mi”、“fa”四个音的吐奏。(3)随钢琴走音阶。2、任务二:“猜一猜”游戏猜一猜老师所弹奏或吹奏的是什么旋律,唱出唱名,并用竖笛模仿出来。3、任务三:学习吹奏乐曲《波兰圆舞曲》4、任务四:用竖笛模仿生活中的声音。四、小结同学们,在音乐之旅中我们学到了许多新的知识,就像今天的快乐农场,我们感受到了学习竖笛的乐趣。
教学流程 :一、导入(10分钟)(1)复习5、6、7三个音,用手号指示5、6、7三个音,学生吹奏出来。(2分钟)(2)教师即兴用这三个音吹奏一个小乐段,学生模仿。(2分钟)(3)教师给固定的节奏,学生进行即兴创编乐句。(6分钟)X X | X X | X X | X — |X X X X | X X X — | 如:5 5 6 6 | 5 5 7 — | 6 6 5 5 | 5 ——— |学生创编并试吹奏,请完成创编的同学上台试奏,评价表扬。(4)请同学们一起吹奏刚刚即兴创编比较好的乐句。二、复习旧曲目(5分钟)师:刚刚我们学习了5、6、7三个音,还会用这三个音进行创编乐句,还记得我们曾学过的一首竖笛曲《我有一只小羊羔》吗?我们一起来吹奏一次好吗?(教师钢琴,学生吹奏,并评议优缺点)(2分钟)7 6 5 6 | 7 7 7 — | 6 6 6 — | 7 7 7 — |7 6 5 6 | 7 7 7 5 | 6 6 7 6 | 5 ——— |1、生评价(气息、吐音、乐感、吸气符号)(1分钟)2、评价再重吹奏一次。(2分钟)三、改编创编乐句(16分钟)师:刚刚我们吹奏了这首《我有一只小羊羔》,现在我想请一位同学和我一起合作来把这首曲子吹奏两次,同学们仔细听听,看看这两次吹奏有什么不同的之处,哪一种吹奏会更加好听一些。(4分钟)(教师改编吹奏改编二、四、六、八小节)
教学流程:一、组织教学师生问好二、导入:1、教师吹奏乐曲《划小船》,《七个小兄弟》。听教师范奏。2、介绍竖笛的历史,了解认识竖笛。3、认识八孔竖笛:吹口,笛头,窗孔,笛身,笛尾,观看演奏姿势。4、了解八孔竖笛八孔的音名及手势,手形,吹奏的姿势。5、练习手指动作,大家来做手指操,学习“do”、“re”、“mi”、“fa”四个音,提出闭指,开指手指尖的要求。6、吐奏练习,介绍吹奏的要求,吐音练习,气息的控制。7、练习:1 1 1 1 | 1———|| 请你跟我这样吹,吐奏不同长短时值同音的练习。8、找个别学生试吹,寻找优点,缺点,并改正。听学生范奏,纠正。9、2 2 2 2 | 2 ———|| 的练习。10、mi音练习:3 3 3 3| 3 ——— ||11、任意说do,re,mi,fa,四个音要求学生很快的将以上的相关练习吹奏出来。12、换音练习,do——fa的换指练习,要求将两条连起来吹奏。13、四音吹奏,do——re——mi——fa的换指练习,要求将四条连起来吹奏。14、将do——re——mi——fa改成fa——mi——re——do吹奏。15、换指练习,换指得练习与要求。16、随意说音,让学生吹奏。17、下课,师生再见!
教学流程:一、 创设情景,导入新课。教师简单介绍八孔竖笛的种类;并富有表情的范奏竖笛曲目《可爱的家》,激发学生学习竖笛的兴趣。二、 新课教学:1、教师介绍竖笛的起源,播放国外竖笛演奏视频。2、教师简介八孔竖笛的两种演奏体系;并教给学生区分德式和英式竖笛的方法。(德式竖笛是从上往下数第五孔为小孔;而英式的竖笛则是从上往下数第四孔为小孔。)3、师简介八孔竖笛的构造、发音原理。师:我们要学习吹奏的高音八孔竖笛,是一种从顶端吹奏的小型哨嘴笛,分为笛头、笛身、笛尾三个部分。它音色柔和、甜美,可任意转调富有歌唱性。4、学习吹奏八孔竖笛的姿势:(1)持笛方法:左手在上,右手在下,左手拇指按住笛身背面上方孔为背孔,左手食指、中指、无名指按1、2、3孔。右手大拇指持笛身,食指、中指、无名指、小指按4、5、6、7孔。(教师边讲解边示范,边指导学生练习)(2)演奏姿势:身体要自然端正,竖笛与身体的夹角保持40度左右,肩部放松,两臂自然下垂。手指、手腕放松,应注意用指肚按空,以使孔关闭严密。手指呈自然弧形,切忌瘪指。(3)运气:气流强弱不同,也能获得不同的音高。如:开同一音孔,气流越强。获得的音则容易爆破,气流弱获得的音则柔和。教师引导学生做“按指”“缓吹”练习。5、单音“2”的学习(1)教师向学生讲解“2”的指法和口风地把握。并用竖笛进行交流变换节奏来吹奏。(2)待学生掌握后进行火车接龙游戏。
第一课时教学过程:1.播放《中学时代》歌曲视频,让学生感受歌曲欢快热烈,充满活力的情绪,进入学习的情境。2.讨论:对刚刚看到听到的歌曲进行初步的分析,如:歌曲的情绪是什么样的?歌曲的速度为什么用“中速稍快”而不用慢速、很慢来表现?歌曲演唱有什么特点?等等。3.第二边播放歌曲视频,结合讨论的问题再次聆听,进一步感受歌曲的力度\速度\演唱情绪。4.学唱《中学时代》,边唱边体会歌曲的意境.注意轻声哼唱。5.请学生仔细观察,找一找\议一议\谈一谈,简单分析歌曲的特点。6.在手风琴伴奏下,进一步练唱歌曲,直至熟练演唱。7.将学生分成两组,比一比那个组演唱的声音洪亮,情绪饱满,音高、节奏准确。8.讨论:这首歌曲还可以采取哪些演唱形式?(独唱、领唱等)9.教师可以按照学生讨论的意见,采用多种方法和演唱形式练唱,边唱边拍手打节奏.还可由自主设计其它方式进行表演。课堂练习:进一步练习准确掌握曲中节奏x xx 0 ( xxxx)演唱与间奏的衔接。作业安排:视唱歌曲前半部分。
《山行》是唐代诗人杜牧的一首七言绝句,写的是诗人在山中小路上行走时所看到的深秋时节的枫林景色,描绘了一幅由“寒山”“石径”“白云”“枫林”等构成的山林秋色图,表达了诗人对大自然美景的热爱之情。在这首诗中,作者以丰富的想象,生动的描写,凝炼的语言使这首诗的意境之美跃然纸上。《赠刘景文》是宋代诗人苏轼的一首七言绝句。此诗前半首说“荷尽菊残”仍要保持傲雪冰霜的气节,后半首通过“橙黄橘绿”来勉励朋友困难只是一时,乐观向上,切莫意志消沉。抒发作者的广阔胸襟和对同处窘境中友人的劝勉和支持,托物言志,意境高远。《夜书所见》是南宋诗人叶绍翁的一首七言绝句,写客游在外,因秋风落叶,感到孤独郁闷,由看到远处篱笆下的灯火,料想是小孩在捉蟋蟀,不禁回忆起自己的故乡和童年的生活。诗歌传达出诗人久居在外,归家不得,思家念亲的思想感情。
提问:1.怎样判断两种相关联的量是否成正比例?用字母怎样表示正比例关系? 2.判断下面两种量是否成正比例?为什么? (1)时间一定,行驶的路程和速度 (2)除数一定,被除数和商 3.单价、数量和总价之间有怎样的关系?在什么条件下,两种量成正比例? 4.导入新课: 如果总价一定,单价和数量的变化有什么规律?这两种量存在什么关系?今天,我们就来研究这种变化规律。
2重点难点教学重点了解我国古代建筑的外观造型、建筑结构、群体布局、装饰色彩。教学难点对我国古代建筑的欣赏感受能力,能够从外观、结构、布局、装饰、类别来欣赏祖国古代的建筑艺术。3教学过程3.1 第一学时教学活动活动1【导入】观察建筑,点出建筑(设计意图:了解建筑的基本特点)1、同学们,我们坐在什么地方?(教室)2、让我们来观察一下,它都有哪些部分组成?(墙壁、天花板、地面、门窗)3、还有什么地方有这些特点?(电影院、家… …)4、 [课件1:现代建筑]这些都叫做“建筑”。(板书)
一、情境导学我国著名数学家吴文俊先生在《数学教育现代化问题》中指出:“数学研究数量关系与空间形式,简单讲就是形与数,欧几里得几何体系的特点是排除了数量关系,对于研究空间形式,你要真正的‘腾飞’,不通过数量关系,我想不出有什么好的办法…….”吴文俊先生明确地指出中学几何的“腾飞”是“数量化”,也就是坐标系的引入,使得几何问题“代数化”,为了使得空间几何“代数化”,我们引入了坐标及其运算.二、探究新知一、空间直角坐标系与坐标表示1.空间直角坐标系在空间选定一点O和一个单位正交基底{i,j,k},以点O为原点,分别以i,j,k的方向为正方向、以它们的长为单位长度建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴.这时我们就建立了一个空间直角坐标系Oxyz,O叫做原点,i,j,k都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为Oxy平面,Oyz平面,Ozx平面.
问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,
本节课选自《2019人教A版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习抛物线及其标准方程在经历了椭圆和双曲线的学习后再学习抛物线,是在学生原有认知的基础上从几何与代数两 个角度去认识抛物线.教材在抛物线的定义这个内容的安排上是:先从直观上认识抛物线,再从画法中提炼出抛物线的几何特征,由此抽象概括出抛物线的定义,最后是抛物线定义的简单应用.这样的安排不仅体现出《课程标准》中要求通过丰富的实例展开教学的理念,而且符合学生从具体到抽象的认知规律,有利于学生对概念的学习和理解.坐标法的教学贯穿了整个“圆锥曲线方程”一章,是学生应重点掌握的基本数学方法 运动变化和对立统一的思想观点在这节知识中得到了突出体现,我们必须充分利用好这部分教材进行教学
∵在△EFP中,|EF|=2c,EF上的高为点P的纵坐标,∴S△EFP=4/3c2=12,∴c=3,即P点坐标为(5,4).由两点间的距离公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求双曲线的方程为x^2/5-y^2/4=1.5.求适合下列条件的双曲线的标准方程.(1)两个焦点的坐标分别是(-5,0),(5,0),双曲线上的点与两焦点的距离之差的绝对值等于8;(2)以椭圆x^2/8+y^2/5=1长轴的端点为焦点,且经过点(3,√10);(3)a=b,经过点(3,-1).解:(1)由双曲线的定义知,2a=8,所以a=4,又知焦点在x轴上,且c=5,所以b2=c2-a2=25-16=9,所以双曲线的标准方程为x^2/16-y^2/9=1.(2)由题意得,双曲线的焦点在x轴上,且c=2√2.设双曲线的标准方程为x^2/a^2 -y^2/b^2 =1(a>0,b>0),则有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求双曲线的标准方程为x^2/3-y^2/5=1.(3)当焦点在x轴上时,可设双曲线方程为x2-y2=a2,将点(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的双曲线的标准方程为x^2/8-y^2/8=1.当焦点在y轴上时,可设双曲线方程为y2-x2=a2,将点(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦点不可能在y轴上.综上,所求双曲线的标准方程为x^2/8-y^2/8=1.
1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.
二、探究新知一、点到直线的距离、两条平行直线之间的距离1.点到直线的距离已知直线l的单位方向向量为μ,A是直线l上的定点,P是直线l外一点.设(AP) ?=a,则向量(AP) ?在直线l上的投影向量(AQ) ?=(a·μ)μ.点P到直线l的距离为PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.两条平行直线之间的距离求两条平行直线l,m之间的距离,可在其中一条直线l上任取一点P,则两条平行直线间的距离就等于点P到直线m的距离.点睛:点到直线的距离,即点到直线的垂线段的长度,由于直线与直线外一点确定一个平面,所以空间点到直线的距离问题可转化为空间某一个平面内点到直线的距离问题.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是C1C,D1A1的中点,则点A到直线EF的距离为 . 答案: √174/6解析:如图,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),