教材分析:"鸡兔同笼"问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。教材在本单元安排“鸡兔同笼”问题,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。“鸡兔同笼”的原题数据比较大,不利于首次接触该类问题的学生进行探究,因此教材先编排了例1,通过化繁为间的思想,帮助学生先探索出解决该类问题的一般方法后,再解决《孙子算经》中数据比较大的原题。解决“鸡兔同笼”问题时,教材展示了学生逐步解决问题的过程,既猜测、列表、假设或方程解。其中假设和列方程解是解决该类问题的饿一般方法。“假设法”有利于培养学生的逻辑推理能力,列方程则有助于学生体会代数方法的一般性。因此在解决“鸡兔同笼”问题时,学生选用哪种方法均可,不强求用某一种方法。
最富趣味的是荷兰艺术家埃舍尔,他到西班牙旅行参观时,对一种名为阿罕拉的建筑物有很深的印象,这是一种十三世纪皇宫建筑物,其墙身、地板和天花板由摩尔人建造,而且铺了种类繁多、美仑美奂的马赛克图案。Escher用数日的时间复制了这些图案,并得到了启发,创造了各种并不局限于几何图案的密铺图案,这些图案包括人、青蛙、鱼、鸟、蜥蜴,甚至是他凭空想象的物体。他创作的艺术作品,结合数学与艺术,给人留下深刻的印象,更让人对数学产生了另一种看法。欣赏埃舍尔的艺术世界:2、动手创作。(小小设计师)看了大艺术家的作品,你现在是不是也有了创作的冲动?下面,请你选一种或几种完全一样的图形进行密铺,可以自己设计颜色,比一比,谁的设计更美观、更新颖。(交流,展示)四、总结:谈收获体会我们今天只是研究了一些规则图形的简单的密铺。生活中还有各种各样的密铺现象。同学们可以到生活中去观察,也可以上网浏览。
密铺的历史背景1619年——数学家奇柏(J.Kepler)第一个利用正多边形铺嵌平面。1891年——苏联物理学家弗德洛夫(E.S.Fedorov)发现了十七种不同的铺砌平面的对称图案。 1924年——数学家波利亚(Polya)和尼格利(Nigeli)重新发现这个事实。最富趣味的是荷兰艺术家埃舍尔(M.C. Escher)与密铺。M.C. Escher于1898年生于荷兰。他到西班牙旅行参观时,对一种名为阿罕伯拉宫(Alhambra)的建筑有很深刻的印象,这是一种十三世纪皇宫建筑物,其墙身、地板和天花板由摩尔人建造,而且铺上了种类繁多、美轮美奂的马赛克图案。Escher 用数日复制了这些图案,并得到启发,创造了各种并不局限于几何图形的密铺图案,这些图案包括鱼、青蛙、狗、人、蜥蜴,甚至是他凭空想像的物体。他创造的艺术作品,结合了数学与艺术,给人留下深刻印象,更让人对数学产生另一种看法。
因此,本套教材中删去了“整除”的数学化定义,而是借助整除的模式na=b直接引出因数和倍数的概念。在本册教材中,由于允许学生采用多样的方法求最大公因数和最小公倍数,分解质因数也失去了其不可或缺的作用,同时,也是为了减少这一单元的理论概念,教材不再把它作为正式教学内容,而是作为一个补充知识,安排在“你知道吗?”中进行介绍。由于这部分内容较为抽象,很难结合生活实例或具体情境来进行教学,学生理解起来有一定的难度。在过去的教学中,一些教师往往忽视概念的本质,而是让学生死记硬背相关概念或结论,学生无法理清各概念间的前后承接关系,达不到融会贯通的程度。再加上有些教师在考核时使用一些偏题、难题,导致学生在学习这部分知识时觉得枯燥乏味,体会不到初等数论的抽象性、严密性和逻辑性,感受不到数学的魅力。所以在教学中应注意以下两点: (1)加强对概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。(2)由于本单元知识特有的抽象性,教学时要注意培养学生的抽象思维能力。
二、 教学目标1.理解分数加减法的算理,掌握分数加减法的计算方法,并能正确地计算出结果。2.理解整数加法的运算定律对分数加法仍然适用,并会运用这些运算定律进行一些分数加法的简便运算,进一步提高简算能力。 3.体会分数加减运算在生活、生产中的广泛应用。三、学情分析五年级的学生已有一定的生活经验,对数学的神秘感有了更强的好奇心。因此,结合分数加减的学习内容适当补充一些数学史料,可使学生的好奇转化为探究欲,促其学习数学兴趣的提高,并逐步形成良好的探究习惯。因此,教学时,应重视教材提供的两个涉及数学文化的阅读材料的学习。在此基础上,再补充一些相关的学习材料。四、教学重点、难点重点:分数加减法的计算方法难点:引导学生体会理解不同算法的思路。
6. 本题是一道实际应用的题,可以结合生活实际举例,在举例中进一步认识分数。7. (读作八分之一)表示把人的身高看作单位“1”,头部的高度占整个身高的 ; (读作五分之三)表示把整个长江的干流看作单位“1”,受污染的部分占整个长江干流的 ; (读作十分之三)表示把死海表层的水看作单位“1”,含盐量占死海表层水的 。8. 读作六分之一, 读作七分之二, 读作是十五分之四, 读作十八分之十一, 读作一百分之七。它们的分数单位分别是: 、 、 、 、 。9. 本题有两个知识点:一是根据分数的意义涂色,是把12个苹果平均分成了2份,1份有6个苹果; 是把12个苹果平均分成了3份,1份有4个苹果; 是把12个苹果平均分成了4份,1份有3个苹果; 是把12个苹果平均分成了6份,1份有2个苹果; 是把12个苹果平均分成了12份,1份有1个苹果。二是在涂色中感受平均分成的份数越多,每一份越少,也可以说随着分母的增大,几分之一所表示的苹果个数,从 的6个到 的1个,相应地在减少。
师:同学们,在四年级的时候,我们已经了解了图形的密铺,请你说一说,什么是图形的密铺?(没有重叠、没有空隙地铺在平面上,就是密铺。)师:图形的密铺又可以叫做镶嵌,以上四个图片,都是由哪些基本图形密铺(镶嵌)而成的呢?(请学生边指边说。)师:还有哪些图形也可以镶嵌?(学生可能回答:三角形,平行四边形,梯形,菱形,正六边形,……)师:今天就请你发挥一下想象力,设计一些与众不同的镶嵌图形。[设计意图说明:学生在四年级已经初步了解了图形的密铺(镶嵌)现象,四幅图片是四年级下册教材《三角形》单元中《密铺》内容中的原图。本单元在此基础上,通过数学游戏拓展镶嵌图形的范围,让学生用图形变换设计镶嵌图案,进一步感受图形变换带来的美感以及在生活中的应用。]二、新授探究一:利用平移变换设计镶嵌图形
◆学习内容长方体和正方体的体积教科书第40——43页例1、例2,第43页“做一做”,以及练习七第3——8题。◆学习目标1. 掌握长方体和正方体的体积计算公式,学会计算长方体和正方体的体积。2. 培养实际操作能力,推理能力及运用知识解决实际问题的能力。◆学习重点能正确计算长方体和正方体的体积。长方体和正方体体积的计算是形成体积的概念、掌握体积的计量单位和计算各种几何形体体积的基础。◆学习难点理解长方体和正方体的体积计算公式的推导过程。体积公式的推导是建立在充分的感性经验的基础上,沟通每行个数、行数、层数与长、宽、高之间的联系,进而顺理成章地推导出公式。◆学习过程1. 实验探索长方体的体积公式计量一个长方体的体积是多少,就是看这个长方体里含有多少个体积单位。但不是所有的物体都能切割成若干个小正方体。动手做试验:用体积为1cm3小正方体摆成不同的长方体。将相关数据填入下表。
师:从图1到图2,风车发生了怎样的变化呢?下面请同学们小组合作,共同来解决报告单上提出的问题。(1)从图1到图2,风车绕点O逆时针旋转了___度。(2)你是怎样判断风车旋转的角度的?生小组讨论。3.小组汇报(实物投影展示)(1)图1到图2,风车绕点O逆时针旋转了90°;(2)组1,根据三角形变换的位置判断风车旋转的角度;(3)组2,根据对应的线段判断风车旋转的角度;(4)组3,根据对应的点判断风车旋转的角度。4.小结(教师边做小结边演示)师:通过观察,我们发现风车旋转后,不仅是每个三角形都绕点O逆时针旋转了90°(闪烁),而且,每条线段(闪烁),每个顶点(闪烁),都绕点O逆时针旋转了90°。5.揭示旋转的特征和性质
(3)按每千克涂料粉刷3.5 m2计算,可求出共需要涂料:1600÷3.5≈460(千克);(4)根据涂料的型号及费用,选择合适的涂料。师:选择涂料时,要考虑很多因素,如价格、耐用期、消费心理、环保等,要怎么选择呢?学生可以把几种涂料进行对比,一起讨论决定,同时学会在交流中理解接纳别人较好的建议:如:A型,优点:价格便宜,需要19桶,总共才5700元;缺点:耐用期太短,两年后又要重新粉刷;B-1型和B-2型,虽然桶装量不同,但价格和耐用期都处在中游水平;C型和D型,优点:耐用期长,最划算;缺点:价格太高,不符合人们的消费心理,也不可能持续那么长时间,至少5年就要更换一下样子。综合以上价格、耐用期、消费心理,选择B-1或B-2型比较划算。而这两种比较来看,B-2型更便宜一些,所以,最后确立用B-2型涂料。
一.创设情境,解决问题。(一)直观认识1.请每个同学举起手中的毛线。说说你的毛线和其他同学有什么不一样。(学生会观察到有长短,颜色,粗细的不一样。)设计这个环节是为了让学生先找出线段的非本质特征。只有去掉了非本质特征,学生才能更明确到记住线段的本质特征。)2.请每个同学在认真观察,说说你的毛线和其他同学的有什么是一样的。这个环节学生最基本能发现手中的毛线是直的。(二).讲解概念1.通过直观的认识后,由教师讲解线段这个概念:像我们刚才手中这一条直直的毛线,就可以看做是线段。(这句话的讲解中,教师要突出直直的,这是线段的最基本特征,还有一个词是是看做是,数学的是严谨的,不能说这条毛线是线段,并让学生也举起毛线和老师一起说说这句话。)
二、说教法:根据以上分析,教学时,我主要采用电化教学、启发谈话、实物操作、合作交流等教学手段,创设一定的学习情境与和谐民主的学习氛围,自觉主动地获取知识。在教学中,充分发挥学生的主体地位,让他们通过动手摆小棒和图片,沟通新旧知识的联系,初步建立“倍”的概念,进而明白“一个数的几倍”的具体意义。三、说学法:1、通过操作活动,让学生体验“一个数的几倍”的含义。2、运用独立思考和合作交流相结合的学习方式,引导学生用简洁的语言有条理地表达自己的思考过程。四、说教学过程:本课教学过程充分依靠教材的编排思路,挖掘教材的编排特点,分以下环节进行教学。(一)创设情境,引入新课。由于倍的概念比较抽象,学生不容易理解,所以本节课创设情境,请3名女同学,6名男同学上台,诱导启发,并说明:男同学是女同学的2倍。这节课就来学习“倍的认识”。使学生对教学内容有熟悉感,为学生创设一种用数学眼光分析观察日常生活问题的能力,激发学习兴趣。
活动四:握手游戏这一环节,我先和一个学生握手,并用甲--乙表示我和刚才那个学生,中间用连线的方式数出我们握了一次手。随后,问题提升:假如有三个小朋友,每两人只握一次手,共握几次手?我先让学生猜想会有几次?然后请三个小朋友上台操作验证,并用数学符号代表三个小朋友,请一个小朋友用连线的方式数。最后提问:同样是3,为什么3个数字可以摆6个两位数,而三个人却只能握三次手?让小朋友通过感悟握手是两个人完成的行为,与位置无关,初步理解简单事物排列与组合的不同。活动五:搭配衣服这一环节,我让学生自主连线搭配,然后请一生上台边连线边介绍,让学生用有序思考的方式解决生活中的实际问题。活动六:买东西这一环节,我让学生在仔细读题的基础上,通过同桌讨论,有序地总结出四种不同的付钱方式,可以从5角考虑起,也可以从1角考虑起。
【教学设想】《课程标准》指出:“实践活动是培养学生进行活动探索与合作交流的重要途径。”在这一理念的支持下,我设计了以小组为单位进行测量实践活动。一、将学生个体间的学习关系改变为“组内合作”学习的关系。通过让学生小组合作活动学习,培养学生的合作意识、集体观念,培强了学生对集体的责任感受和荣誉感。二、根据学生的实际情况,我合理选取活动素材,向学生提供了具体有趣、富有一定启发性的活动。全课共有四部分:第一部分,课前律动;课堂开始配以儿童喜欢的音乐,让学生在轻松愉悦中进入课堂。第二部分,复习旧知、引入新课;通过对前面所学知识的复习,加深对长度单位“厘米”和“米”的认识。第三部分,活动体验、寓教于乐;这一部分共五个层次;第一层,选取了比较容易的活动,在木条上测量一米的长度,巩固用尺子测量物体长度的方法;第二层,小组分工合作测量与同学们朝夕相处的课桌的长、宽、高这一实际问题,渗透了合作方法;
统计是一种数学思想,也是认识客观事物常用的一种方法。让学生学习统计,要引导他们经历收集、整理数据的过程,精力把整理出来的数据用图表形式表现出来的过程,经历对统计的数据进行分析、判断的过程,从中理解并掌握一些有关统计的基础知识和基本技能,学习解决实际问题。(一)新的课程标准要求我们的数学课程应体现基础性、普及性和发展性。要强调从学生已有的生活经验出发,要使学生学有价值的数学,这些内容要有利于学生主动地进行观察、实验、猜测、验证、理解与交流等数学活动。(二)本课的教学通过学生积极参与数学活动,合作交流,力求体现人人学有价值的数学,体现数学就在我们的身边,与我们的学习生活紧密相联,体会统计的目的和意义,掌握统计的方法,体验数学学习的乐趣。
教学内容:统一长度单位教材分析:通过量一量说一说想一想等活动切实感受到统一长度单位的必要性及其对生活的重要意义。学情分析:在上册“比一比”中学了比较物体长短的基础上学习的。尽管学生有这方面的经验和基础,但是长度单位的操作和应用是多种知识的综合,对小孩来说还是比较难的,在教学中应根据学生特点,注重实践性,培养观察力。教学目标:1、让学生通过量一量、说一说的活动,体验统一长度单位的过程,感受统一长度单位的必要性,为厘米、米的学习打下基础。2、让学生用不同实物作标准进行测量,培养学生的动手、思考能力,以及合作、估测的意识。3、通过不同的测量活动,让学生体验测量活动的过程,感受学习与生活的联系,体验学习数学的乐趣。
在课堂上,我通过点播和启发,充分调动学生的主体意识,让学生体会成功的喜悦。在这里放手让学生找规律,顺势而导地将其引向“精彩”,使课堂教学在“预设”与“生成”的融合中放出异彩。当然了,更重要的是培养学生掌握找规律的数学思考方法,发展了数学能力。在记忆口诀之前,我让学生找找口诀中的规律,然后让学生运用自己发现的特点去记忆口诀,这样学生就不会感到枯燥疲惫,而会主动积极的去记忆,让学生感到自己才是学习的主人。课堂上我还设计了《西游记》中的一段故事情节帮助记忆口诀,通过有趣的人物形象,大大地激发了学生对口诀的兴趣。对于特别难记的口诀,让学生讨论交流、寻找规律,有效地激发孩子的探究心和创造欲,学生想出了联系上、下句记忆,或者用以前学的乘法口诀进行记忆等方法。(四)分层练习,由浅入深。这里的练习主要分基本练习及拓展性综合练习(解决实际问题)两类。首先,通过对口令、口算练习,进一步巩固口诀。
2、教材所处的地位和重、难点:表内乘法是学生学习乘法的开始,它是学生今后学习表内除法和多位数乘、除法的基础。教材内容的呈现是在学生学“2—5的乘法口诀”以后。由于他们已经具有学习2—5的乘法口诀的基础,所以教材的呈现形式没有给出一个完整的乘法算式和一句完整的口诀,意在让学生主动探索归纳出6的乘法口诀。体现了提高学生学习独立性要求的编写意图。熟练口算表内乘法,是每个学生应具备的最基本的计算能力。因此,本课的重点应该是让学生理解6的乘法口诀的形成过程;难点是怎样去熟记并利用乘法口诀来解决生活中的实际问题。3、教学目标:①通过观察、探索,使学生知道6的乘法口诀的形成过程。②通过教学活动,培养学生观察能力、判断能力、合作交流和语言表达能力。③让学生体验生活中处处有数学,会用数学知识解决生活中的问题。
由于乘法的含义是本节课的重难点,所以我把乘法概念的建立置入学生喜欢的拼图活动之中,并通过实物图,同数相加的算式与乘法算式对照,让学生完成对乘法的初步认识。这样,使概念教学成为学生丰富多彩的学习活动,既有利于学生体会乘法的意义,又可增强学生学习数学的兴趣。在我们的成长过程中,都能体会到,小时候学东西学得快忘得也快。所以,针对小孩子的认知特点,及时地进行反馈练习就是一种帮助学生掌握新知的好方法。因此,我让他们讲黑板上的加法算式改写乘法算式。通过改写,让学生体会不是所有的加法算式都能改写成乘法算式。这样,乘法概念轻轻松松地就被建立在学生的脑海中,又使他们感受到“数学其实就这么简单”,重难点也迎刃而解。教学效果不言而喻,同时学生的个性也得到张扬。
二、说教学目标、教学重难点我对教材的认识,以及学生的年龄特点,我确定的教学目标有3个:知识与技能目标:让使学生经历编5的乘法口诀的过程,进一步理解乘法的意义,掌握5的乘法口诀,提高应用乘法解决实际问题的能力。过程与方法目标:使学生在编口诀和用口诀的过程中,初步培养发现简单规律的能力,积累积极的学习情感,增强学习数学的自信心。情感与态度目标:让学生通过数学活动进一步体会数学在现实生活中的应用,增强学习数学的积极情感,并获得成功的体验,提高学好数学的信心。教学重点是:经历编口诀的过程,理解每句口诀的含义;难点是:学生自己尝试探究并得出5的乘法口诀。三、说教法学法接着,我说说本课采用的教学方法。围绕本课的教学目标和教学重难点,我采用了设置问题情境、激发学习兴趣与组织学生动手实践相结合的方法。