我们知道圆是一个旋转对称图形,无论绕圆心旋转多少度,它都能与自身重合,对称中心即为其圆心.将图中的扇形AOB(阴影部分)绕点O逆时针旋转某个角度,画出旋转之后的图形,比较前后两个图形,你能发现什么?二、合作探究探究点:圆心角、弧、弦之间的关系【类型一】 利用圆心角、弧、弦之间的关系证明线段相等如图,M为⊙O上一点,MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求证:MD=ME.解析:连接MO,根据等弧对等圆心角,则∠MOD=∠MOE,再由角平分线的性质,得出MD=ME.证明:连接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵MD⊥OA于D,ME⊥OB于E,∴MD=ME.方法总结:圆心角、弧、弦之间相等关系的定理可以用来证明线段相等.本题考查了等弧对等圆心角,以及角平分线的性质.
2、了解小树的生长过程,有初步的逻辑判断能力。 活动准备: 1、幼儿认识数字1—4,有初步目测4以内数的经验。 2、学具:相册模板16个,相应图片16套;教具:相册、照片范例。 活动过程: 1、导入,引起幼儿兴趣。 (1)师:树妈妈给树宝宝拍了许多照片,你们想看吗? 师:我们来看看,它都给小树拍了哪些照片。 (2)出示小树相片,幼儿感受照片上小树的不同数量和不同的生长阶段。 ①出示“小芽”的照片。 师:这是树宝宝的照片吗?是树宝宝什么时候的照片? 师:小的时候它叫什么呢? (引导幼儿说出小芽) 师:这是小树在小芽时候的照片,是几个小芽?(目测小芽的数量)
《刚要》中明确指出:“让幼儿能从生活和游戏中感受事物的数量关系并体验到数学的重要和乐趣”。根据这一要求,利用测量活动将幼儿生活中的内容数量化,不仅能够使幼儿轻松积累测量的经验,而且能从中体验到测量的乐趣。那么,为了激发幼儿测量的兴趣,让幼儿了解测量的知识,积累测量经验,学会做简单的测量记录。因此,本次活动我设计为一个探究性的学习活动,从测量孩子的图形(正方形)开始,利用孩子常见的“回形针”为自然物,在活动中放手让幼儿大胆进行尝试,将幼儿的被动学习变为主动学习。在动手操作中不仅获得知识经验,而且还获得了学习知识的方法和能力的提高。 活动目标: 1、学习用自然物测量图形的边长,探索并初步掌握正确的测量方法。 2、会用圆圈、短线简单的图形记录测量结果。 3、能积极愉快的参与活动,体验测量的乐趣。 活动准备: 教具:大小不同的正方形、各种图示、照相机。 学具:每人一个正方形、彩色回形针若干、水彩笔。
2、学习按给出的序数词找到它所表示的相应位置。3、发展幼儿思维的逻辑判断能力和动手操作能力。4、培养幼儿在计算活动中的兴趣。活动准备:森林小区图、楼房图、各种小动物教具若干、写有1—5序数的“钥匙”一套、幼儿每人一套空白卡片、一支黑色笔、一张照片卡供游戏使用。活动过程:一、学习用第几座的形式来表示五座房子的序数。1、引出课题:告诉小朋友一个好消息!森林里的小动物们要搬新房子啦!它们还请小朋友们去帮忙分房子呢。看!森林小区有这么多漂亮颜色的新房子,它们都是什么颜色的呀?2、别着急,我们从左到右,一座一座的说。(绿的、红的、蓝的、黄的、还有紫色的。)
2、仔细观察,大胆想象,提高思维的灵活性。 3、体验数学游戏的快乐,增强参与数学活动的自信心。活动准备: 雪花片每桌一份,幼儿人手一张数字卡,桌面各贴一个数字(1-7),教师数字卡1—7,塑料花若干,小树、小花、水梨、葡萄数量各为八个。活动过程:1、复习巩固7以内的数:(1)、-----师出示塑料花,引起幼儿种花树的兴趣,幼儿变魔术成为小花树,教师变成魔术师。------魔术师:“小花树们按照你们手里的数字,去找相应的花盆(桌子),把自己种下去!”------幼儿按照自己手中的数字寻找正确的位置。“XXX花宝宝你种 在几号花盆里啊?” (2)、游戏:《花开花落》 师:“小花树在太阳公公和雨姑姑的照顾下,开出了X朵花!” 幼儿根据教师出示的数字卡片,拿相应数量的雪花片。 (师逐一出示数字卡2、3、4。)
二、通过情景游戏等活动,让幼儿初步感知图形之间的转换关系,并能想办法解决问题。三、培养幼儿思维的灵活性,发展幼儿动手能力,激发幼儿学习数学的欲望。活动准备:1、学会了各种图形的特征。2、自制的“小路”,上面镂刻大小不同的图形“土坑”,将镂刻下来的图形作成铺路的“石头”。小篮同幼儿人数。3、圆形、三角形、长方形、正方形的图形标记,音乐。活动过程:一、情景导入“捡石头”,激发幼儿活动兴趣。1、“小朋友,今天的天气真好,我们一起去郊外捡石头!”(随音乐进入活动室)2、教师提出操作要求:“快看!有那么多五彩缤纷的小石头,大家可以挑自己喜欢的捡。”3、引导幼儿观察、操作,鼓励幼儿边操作边交流。4、请小朋友大胆介绍自己喜欢的石头(颜色、形状)。5、游戏:按标记举“石头”。
2、认识圆形、正方形、三角形图形标记,并学习按照图形标记制作相应的形状。 3、能注意操作过程中的书面整洁,乐意边操作边讲述。 活动准备: 1、圆形、三角形、正方形饼干(均未拆封)若干。 2、三只毛绒小动物,每个小动物胸口有一个形状标记。 3、圆形、三角形、正方形大图片。 4、幼儿用书(P10—11)人手一册 5、圆形、三角形、正方形的印章(或小图片),颜料等若干。 活动过程: 一、观察饼干的形状,了解形状的主要特征。1、出示饼干,请幼儿说说:这是什么?它有哪些形状?你喜欢吃什么形状的饼干? 2、教师(出示圆形、三角形、正方形):圆形(三角形、正方形)是什么样子的? 3、教师折叠图形,引导幼儿直观感受图形的特征呢感,使幼儿知道:圆形是圆圆的,没有尖尖的角;正方形有四个一样大的角,一样长的边;三角形有三个角,三条边。
【类型一】 逆用积的乘方进行简便运算计算:(23)2014×(32)2015.解析:将(32)2015转化为(32)2014×32,再逆用积的乘方公式进行计算.解:原式=(23)2014×(32)2014×32=(23×32)2014×32=32.方法总结:对公式an·bn=(ab)n要灵活运用,对于不符合公式的形式,要通过恒等变形转化为公式的形式,运用此公式可进行简便运算.【类型二】 逆用积的乘方比较数的大小试比较大小:213×310与210×312.解:∵213×310=23×(2×3)10,210×312=32×(2×3)10,又∵23<32,∴213×310<210×312.方法总结:利用积的乘方,转化成同底数的同指数幂是解答此类问题的关键.三、板书设计1.积的乘方法则:积的乘方等于各因式乘方的积.即(ab)n=anbn(n是正整数).2.积的乘方的运用在本节的教学过程中教师可以采用与前面相同的方式展开教学.教师在讲解积的乘方公式的应用时,再补充讲解积的乘方公式的逆运算:an·bn=(ab)n,同时教师为了提高学生的运算速度和应用能力,也可以补充讲解:当n为奇数时,(-a)n=-an(n为正整数);当n为偶数时,(-a)n=an(n为正整数)
方法总结:本题考查了幂的乘方的逆用及同底数幂的乘法,整体代入求解也比较关键.【类型三】 逆用幂的乘方结合方程思想求值已知221=8y+1,9y=3x-9,则代数式13x+12y的值为________.解析:由221=8y+1,9y=3x-9得221=23(y+1),32y=3x-9,则21=3(y+1),2y=x-9,解得x=21,y=6,故代数式13x+12y=7+3=10.故答案为10.方法总结:根据幂的乘方的逆运算进行转化得到x和y的方程组,求出x、y,再计算代数式.三、板书设计1.幂的乘方法则:幂的乘方,底数不变,指数相乘.即(am)n=amn(m,n都是正整数).2.幂的乘方的运用幂的乘方公式的探究方式和前节类似,因此在教学中可以利用该优势展开教学,在探究过程中可以进一步发挥学生的主动性,尽可能地让学生在已有知识的基础上,通过自主探究,获得幂的乘方运算的感性认识,进而理解运算法则
解析:(1)根据表中信息,用优等品频数m除以抽取的篮球数n即可;(2)根据表中数据,优等品频率为0.94,0.95,0.93,0.94,0.94,稳定在0.94左右,即可估计这批篮球优等品的概率.解:(1)570600=0.95,744800=0.93,9401000=0.94,11281200=0.94,故表中依次填0.95,0.93,0.94,0.94; (2)这批篮球优等品的概率估计值是0.94.三、板书设计1.频率及其稳定性:在大量重复试验的情况下,事件的频率会呈现稳定性,即频率会在一个常数附近摆动.随着试验次数的增加,摆动的幅度有越来越小的趋势.2.用频率估计概率:一般地,在大量重复实验下,随机事件A发生的频率会稳定到某一个常数p,于是,我们用p这个常数表示随机事件A发生的概率,即P(A)=p.教学过程中,学生通过对比频率与概率的区别,体会到两者间的联系,从而运用其解决实际生活中遇到的问题,使学生感受到数学与生活的紧密联系
解析:平行线中的拐点问题,通常需过拐点作平行线.解:(1)∠AED=∠BAE+∠CDE.理由如下:过点E作EG∥AB.∵AB∥CD,∴AB∥EG∥CD,∴∠AEG=∠BAE,∠DEG=∠CDE.∵∠AED=∠AEG+∠DEG,∴∠AED=∠BAE+∠CDE;(2)同(1)可得∠AFD=∠BAF+∠CDF.∵∠BAF=2∠EAF,∠CDF=2∠EDF,∴∠BAE+∠CDE=32∠BAF+32∠CDF,∴∠AED=32∠AFD.方法总结:无论平行线中的何种问题,都可转化到基本模型中去解决,把复杂的问题分解到简单模型中,问题便迎刃而解.三、板书设计平行线的性质:性质1:两条平行线被第三条直线所截,同位角相等;性质2:两条平行线被第三条直线所截,内错角相等;性质3:两条平行线被第三条直线所截,同旁内角互补.平行线的性质是几何证明的基础,教学中注意基本的推理格式的书写,培养学生的逻辑思维能力,鼓励学生勇于尝试.在课堂上,力求体现学生的主体地位,把课堂交给学生,让学生在动口、动手、动脑中学数学
解析:根据“全等三角形的对应角相等”,可知∠EAD=∠CAB,故∠EAB=∠EAD+∠CAD+∠CAB=2∠CAB+10°=120°,即∠CAB=55°.然后在△ACB中利用三角形内角和定理来求∠ACB的度数.解:∵△ABC≌△ADE,∴∠CAB=∠EAD.∵∠EAB=120°,∠CAD=10°,∴∠EAB=∠EAD+∠CAD+∠CAB=2∠CAB+10°=120°,∴∠CAB=55°.∵∠B=∠D=25°,∴∠ACB=180°-∠CAB-∠B=180°-55°-25°=100°.方法总结:本题将三角形内角和与全等三角形的性质综合考查,解答问题时要将所求的角与已知角通过全等及三角形内角之间的关系联系起来.三、板书设计1.全等形与全等三角形的概念:能够完全重合的图形叫做全等形;能够完全重合的三角形叫做全等三角形.2.全等三角形的性质:全等三角形的对应角、对应线段相等.首先展示全等形的图片,激发学生兴趣,从图中总结全等形和全等三角形的概念.最后总结全等三角形的性质,通过练习来理解全等三角形的性质并渗透符号语言推理.通过实例熟悉运用全等三角形的性质解决一些简单的实际问题
方法总结:作平移图形时,找关键点的对应点是关键的一步.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.三、板书设计1.平移的定义在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.2.平移的性质一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等,对应线段平行(或在一条直线上)且相等,对应角相等.3.简单的平移作图教学过程中,强调学生自主探索和合作交流,学生经历将实际问题抽象成图形问题,培养学生的逻辑思维能力和空间想象能力,使得学生能将所学知识灵活运用到生活中.
教学反思: 1.本课时设计的主导思想是:将数形结合的思想渗透给学生,使学生对数与形有一个初步的认识.为将来的学习打下基础,这节课是一堂起始课,它为学生的思维开拓了一个新的天地.在传统的教学安排中,这节课的地位没有提到一定的高度,只是交给学生比较线段的方法,没有从数形结合的高度去认识.实际上这节课大有可讲,可以挖掘出较深的内容.在教知识的同时,交给学生一种很重要的数学思想.这一点不容忽视,在日常的教学中要时时注意.2.学生在小学时只会用圆规画圆,不会用圆规去度量线段的大小以及截取线段,通过这节课,学生对圆规的用法有一个新的认识.3.在课堂练习中安排了度量一些三角形的边的长度,目的是想通过度量使学生对“两点之间线段最短”这一结论有一个感性的认识,并为下面的教学做一个铺垫.
【教学目标】1.经历从不同方向观察物体的活动过程,发展空间观念;能在与他人交流的过程中,合理清晰地表达自己的思维过程.2.在观察的过程中,初步体会从不同方向观察同一物体可能看到不同的图形.3.能识别简单物体的三视图,会画立方体及其简单组合体的三视图.【基础知识精讲】1.主视图、左视图、俯视图的定义从不同方向观察同一物体,从正面看到的图叫主视图,从左面看到的图叫左视图,从上面看到的图叫做俯视图.2.几种几何体的三视图(1)正方体:三视图都是正方形.圆锥的主视图、左视图都是三角形,而俯视图的图中有一个点表示圆锥的顶点,因为从上往下看圆锥时先看到圆锥的顶点,再看到底面的圆.3.如何画三视图 当用若干个小正方体搭成新的几何体,如何画这个新的几何体的三视图?
③设每件衬衣降价x元,获得的利润为y元,则定价为 元 ,每件利润为 元 ,每星期多卖 件,实际卖出 件。所以Y= 。(0<X<20)何时有最大利润,最大利润为多少元?比较以上两种可能,衬衣定价多少元时,才能使利润最大?☆ 归纳反思 ☆总结得出求最值问题的一般步骤:(1)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;(2)在自变量的取值范围内,运用公式法或通过配方法求出二次函数的最值。☆ 达标检测 ☆ 1、用长为6m的铁丝做成一个边长为xm的矩形,设矩形面积是ym2,,则y与x之间函数关系式为 ,当边长为 时矩形面积最大.2、蓝天汽车出租公司有200辆出租车,市场调查表明:当每辆车的日租金为300元时可全部租出;当每辆车的日租金提高10元时,每天租出的汽车会相应地减少4辆.问每辆出租车的日租金提高多少元,才会使公司一天有最多的收入?
(1)该校被抽查的学生共有多少名?(2)现规定视力5.1及以上为合格,若被抽查年级共有600名学生,估计该年级在2015年有多少名学生视力合格.解析:由折线统计图可知2015年被抽取的学生人数,且扇形统计图中对应的A区所占的百分比已知,由此即可求出被抽查的学生人数;根据扇形统计图中C、D区所占的百分比,即可求出该年级在2015年有多少名学生视力合格.解:(1)该校被抽查的学生人数为80÷40%=200(人);(2)估计该年级在2015年视力合格的学生人数为600×(10%+20%)=180(人).方法总结:本题的解题技巧在于从两个统计图中获取正确的信息,并互相补充互相利用.例如求被抽查的学生人数时,由折线统计图可知2015年被抽取的学生人数是80人,与其相对应的是扇形统计图中的A区,而A区所占的百分比是40%,由此求出被抽查的学生人数为80÷40%=200(人).
想一想:为什么在师生猜拳中老师一直说“5”能赢?为什么选择和多的那队没胜,而选择和少的那队却胜了?选择可能性大的是不是每次一定能赢?选择可能性小是不是每一次一定都输?(至此,本节课到了一个升华层次,学生通过互动游戏、自主探究、讨论分析,从而揭示了“猜拳游戏”中的秘密,对“可能性”的理解达到了一个更高水平,有效地完成了本课重难点教学。)(4)实践验证。实践验证理论。再一次组织学生有目的地猜和,进行实践验证。让理论与实践有机的结合(三)拓展创新,内化提升。儿童用品商店将要举行促销活动,凡到商店购物的顾客都可参加《转盘转转乐》活动。每位顾客可转两次,用两次指针所指数相加得到一个和,不同的和能得到相应的奖项。
1、、用多媒体幻灯片逐一出示各种图片。创设问题情境。引导学生提出用乘法计算问题。内容:邮局邮票出售处,有的邮票一枚80分,有的邮票一枚60分。百货商店鞋柜,一双旅游鞋78元,一双皮鞋164元。电影院售票处:日场一张电影票15元,夜场一张电影票20元。小袋鼠蹦跳一次约2米,小袋鼠蹦跳33次。文具商店柜台,每合图钉120个,每包日记本25本。2、出示教科书第70页例2主题图:三年纪一班29个同学去参观航天航空展览,门票每张8元。请学生提出问题,老师在学生提出问题的基础上,补充提出如果老师这时只带250元钱去够吗?二、尝试解决。1、教师先请学生猜一猜带250元够不够?再请学生思考怎么知道我们猜得对不对呢?看看小精灵是怎么说的?2、怎么才能知道8×29大约是多少呢?能不能用我们前面学过的计算方法来解决这个问题。3、启发学生想出前面我们已经学过整十乘一位数的乘法口算。我们可以把29看成最接近的整十数来估算。
一、课堂教学:1、引导阶段:师:同学们上节课我们学习了的第八课《瓢虫的花衣裳》同学们表现得很好,连隔壁班的老师都夸奖你们呢!同学们要继续努力。我们知道世界每天都在发生着不同的变化,每天都会发生很多有趣的事情。这几天你发生了哪些有趣的事情?生:各抒己见,气氛活跃。师:同学们都很积极,那我先说一下老师有趣的事情,再请同学们说说自己的事情好不好呀?