提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

《听听,秋的声音》说课稿

  • 《说文明话, 做文明人》主题班会教案

    2、文明礼貌用语我知道。学生二:“三文明”教育活动已经轰轰烈烈的展开了。在学习三文明教材中,我们有一项特殊的作业——收集文明礼貌用语,现在我们就八仙过海,各显神通,看谁语言美。(开火车)学生发言。学生一:听同学们的发言,我已经感受到了我们的语言的确很美,希望在以后的生活中,我们能经常用优美的语言与人交流。3、读书笔记展览。学生二:“文明”教育活动已经渗透到每个同学的心里,我们班同学写了读书笔记。请按顺序依次参观。4、文明手抄报展览。5、为获奖同学颁发奖状。(自制奖状)学生一:我们学了那么多,最终目的就是让我们“说文明话,行文明举,做文明人”。请欣赏〈文明礼仪歌谣〉

  • 人教版高中语文必修5《说“木叶”》教案

    【教学目标】Ⅰ、学习理解诗歌语言的暗示性特质。Ⅱ、根据诗歌语言的特质,进行迁移,领略诗歌的精妙之处,给同学如何鉴赏诗歌提供实感。㈠、导入:各位同学,有个成语叫"一字千金"。对我而言,第一次领略到一个字的分量,是在小学三年级的时候,一次作文评析课上。当时我对自己的文章充满了期待,希望能得到老师的赞赏。记得老师进来后的第一句话是"有一篇文章,我就冲它用了一个字,我给它打95分。打这样的高分,对我来说,是极为难得的。"同学都充满了好奇,老师接着说"这个字就是一个'悟'字。我们的同学都说我学到了,我明白了,我懂得了一个道理,而这位同学却用了一个'悟'字,难能可贵。"这篇文章不是我的,在羡慕的同时,一个字在文章中的分量就深深的刻在了我的心上。文学作品中,一个字精妙与否,足以决定作品是流光溢彩,还是黯然失色。尤其是我们的古典诗词,用简短的几个字,造就的却是丰富的情感与博大的意境。读后满口余香,却是妙处难与君说。这跟诗歌的语言是密不可分的。今天,我们就通过《说"木叶"》一文,对中国古典诗词语言特质作一番探幽。

  • 《把握时代机遇做新时代优秀的共青团员》国旗下的讲话范文

    时光的沙漏里,细沙流走的是光阴;淡淡檀香里,袅袅燃尽的也是光阴。中国共产主义青年团走过了一百年的光辉岁月,谱写了一段又一段可歌可泣的壮丽篇章。回望来时路,有风雨,有坎坷,有苦难;环看现在时,有机遇,有挑战,有昂扬;展望未来梦,有光明,有希望,有期许。能成为一名共青团员,加入团组织的大家庭,对我来说,是莫大的光荣,也是满满的自豪。生命如歌,或抑扬顿挫,或婉转悠扬。三年过去,忙碌而充实,付出着,收获着。如果说高中是本人生的教科书,如今我有幸读了这本书,并已进入书的完结篇,也或许只是其中一篇的尾声,但三年前“为共产主义事业奋斗”的慷慨誓言,仍在我耳边不断回响。作为共青团员的每寸光阴,都让我于心铭记。

  • (初中)国旗下讲话:寻找学习的快乐,享受生活的幸福

    学习快乐吗?我想很多学生的回答是“不快乐”,为什么呢?看看我们沉重的书包就有了答案:它里面装满了早起晚睡、作业考试、成绩评比、特招重点等等,所以有人形象的说它是我们身上的负担和包袱,压得我们喘不过气来!果真如此吗?当我们静下心来冷静的想一想,就会得出另外一种答案:沉重的书包是我们人生的智囊、自信的源泉、远大的抱负!我们说学习苦,是因为我们仅仅从生理的角度去衡量它,苦于没有时间看电视、泡网吧、玩游戏、苦于没有时间贪睡、贪吃、贪玩,总之一句话,苦于没有时间贪图享乐!固然,吃喝玩是快乐的,但这种乐趣只是低级的、物质的、短暂的,是动物本能式的快乐,作为人类享受高级的、持久的快乐,应该是精神领域的快乐,她能陶冶情操、让我们自信自强,使我们生活得更幸福!如何获得,只有学习、学习再学习!

  • 国旗下的讲话-天下兴亡,我的责任!-领导讲话 - 国旗下讲话

    天下兴亡,我的责任! 同学们,你们说"天下兴亡"的下一句是什么 ——不,是"我的责任"!如果这次期中考试每个人都额外加10分,那不等于没加吗 "天下兴亡,匹夫有责"等于大家无责."匹夫有责"要改成"我的责任".只有这个思想,我们的国家才有希望.如果人人都说:学校秩序不好,是我的责任;教育办不好,是我的责任;国家不强盛,是我的责任!人人都能主动负责,天下哪有不兴盛的国家每个学生都应该把责任拉到自己身上来,而不是推出去.如果教室很脏,老师问"怎么回事 "一般会有个学生站起来说:"报告老师,今天是12号同学值日,他没打扫卫生."那样,12号学生是要受批评的.而在一所全国知名的学校,我发现他的学生会这样说:"老师,对不起,这是我的责任!"然后马上去打扫.灯泡坏了,哪个学生看见了,自己就会掏钱去买一个安上;窗户玻璃坏了,学生自己马上买一块换上——不把责任推出去,而是揽过来.我们要有"勿以善小而不为,勿以恶小而为之"的敬业观念.天下有大事吗 没有.但任何小事都是大事.集小恶则成大恶,集小善则成大善.培养良好的道德,是从那很小很小的事开始的.这种道德是慢慢建立起来的,而不是专门找到大事才干.天下无大事,请先把自己脚下的纸屑捡起来——这就是我们要做的事.

  • 关于增强法纪意识,争做守法公民的国旗下的讲话

    增强法纪意识,争做守法公民263班老师们、同学们:大家早上好!12月是“XX市法纪教育月”,为推进中学生自护安全教育的有序开展,积极培养学生珍爱生命、关爱生命意识,增长基本的安全自护知识,提高避险抗灾能力,我讲话的主题为“增强法纪意识,争做守法公民”。青少年违法犯罪问题,是现阶段一个不容忽视的社会问题,必须引起全社会的高度重视。青少年时期,具有好奇心强、好学善仿、辨别是非能力差、可塑性较大等。而青少年这些不同于成年人的特点,反映在青少年犯罪问题上,就是行为盲目,带有很大偶然性。其犯罪有以下特点:犯罪年龄呈低龄化。从年龄反面看:近年来,犯罪的高发年龄在18岁左右,其中以14-16岁少年犯罪更为突出,并呈越来越低龄化的趋势。

  • 关于学习航天精神,攀登科学高峰的国旗下的讲话

    学习航天精神,攀登科学高峰老师、同学们:大家上午好。今天我演讲的主题是“学习航天精神,攀登科学高峰”。600多年前的明朝士大夫万户——人类第一个尝试飞天梦想的中国人。虽然,他的生命随着轰鸣化作了一缕轻烟,然而他的名字却记录在人类飞天梦想的起点上。600多年后,中国一代又一代的航天人,翻越飞天道路上一个又一个障碍,将先人的梦想变成了现实。每一次壮丽腾飞,托举起的都是中华民族的飞天梦想。“神九”的火焰仿佛还萦于昨日,巨响轰鸣带着国人的梦想步向太空,这一切的一切仍未尘埃落定,“神十”就已经带着前辈的扬尘奔向穹宇。鹰击长空,白虹贯日,我们只能见诸荧屏;神箭洞天,回声轰隆,我们也许觉不出那震动,但我们的内心却同样震撼。美国人完全垄断载人航天事业的神话完全被神舟翔天所打破,中国将在未来的太空中,绽放出最为绚丽的光彩。一次又一次的遨游太空,我不禁想问,什么才是真正的航天精神?

  • 人教版高中语文必修3《爱的奉献学习议论中的记叙》教案2篇

    方法点拨教师:有的同学叙述事实论据时,不突出重点和精华,不注意取舍,水分太多,有许多的叙述描写,有时还有详细的故事情节,文章几乎成了记叙文,使文章的论点无法得到充分的证明,这是写议论文的大忌。那么:议论文中的记叙有哪些特点?同学各抒己见。投影显示:1.议论中的记叙不是单纯的写人记事,记叙文字是为议论服务的,其目的是为作者所阐明的道理提供事实依据。所以,在记叙时要求简洁、概括,舍弃其中的细节,仅仅交代清楚事件或者人物的概貌即可,一般不在各种描写手段上下功夫,只要把能证明观点的那个部分、侧面交代清楚就行了。2.议论文中的记叙性文字不得超过总字数的1/3,否则视为文体不当。能力提升一、教师:了解了议论文中的记叙的特点,接下来我们看看今天的话题:“爱的奉献”,你想从哪个角度立论?有哪些素材?

  • 人教版高中政治选修3人民的选择,历史的必然教案

    (三)、历史的必然:人民代表大会制度的确立1、《中国人民政治协商会议共同纲领》作为临时宪法规定我国根本政治制度是人民代表大会制度。新中国的成立,标志着亿万中国人民真正成为国家、社会和自己命运的主人。此前召开的中国人民政治协商会议第一届全体会议,为建立新型国家政权发挥了重大作用,会议通过的《中国人民政治协商会议共同纲领》具有临时宪法的地位,为全国人民代表大会制度的建立奠定了法律基础。共同纲领规定:中华人民共和国的国家政权属于人民,人民行使国家权力的机关为各级人民代表大会和各级人民政府。2、人民代表大会制度在我国正式建立起来的标志:1954年9月15日,第一届全国人民代表大会第一次会议在北京召开,会议通过了《中华人民共和国宪法》,标志着人民代表大会制度在我国正式建立起来。

  • 人教版高中地理选修1恒星的一生和宇宙的演化教案

    ①演示动画,理解大爆炸宇宙论②主要观点:? 大约150亿年前,我们所处的宇宙全部以粒子的形式、极高的温度、极大的密度,被挤压在一个“原始火球”中。? 大爆炸使物质四散出击,宇宙空间不断膨胀,温度也相应下降,后来相继出现在宇宙中的所有星系、恒星、行星乃至生命。2、其它宇宙形成理¬——稳定理论3、大胆猜测:宇宙的将来史蒂芬·霍金是英国物理学家,他提出的黑洞理论和宇宙无边界的设想成了现代宇宙学的重要基石。霍金的宇宙无边界的设想是这样的:第一,宇宙是无边的。第二,宇宙不是一个可以任意赋予初始条件或边界的一般系统。霍金预言宇宙有两种结局:永远膨胀下去,不断地扩大,我们将看到所有星系的星球老化、死亡,剩下我们孤零零的,在一片黑暗当中。或者会塌缩而在大挤压处终结科学巨人霍金:探索的精神)

  • 人教A版高中数学必修一函数的零点与方程的解教学设计(1)

    本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.5.1节《函数零点与方程的解》,由于学生已经学过一元二次方程与二次函数的关系,本节课的内容就是在此基础上的推广。从而建立一般的函数的零点概念,进一步理解零点判定定理及其应用。培养和发展学生数学直观、数学抽象、逻辑推理和数学建模的核心素养。1、了解函数(结合二次函数)零点的概念;2、理 解函数零点与方程的根以及函数图象与x轴交点的关系,掌握零点存在性定理的运用;3、在认识函数零点的过程中,使学生学会认识事物的特殊性与一般性之间的关系,培养数学数形结合及函数思想; a.数学抽象:函数零点的概念;b.逻辑推理:零点判定定理;c.数学运算:运用零点判定定理确定零点范围;d.直观想象:运用图形判定零点;e.数学建模:运用函数的观点方程的根;

  • 人教A版高中数学必修一函数的零点与方程的解教学设计(2)

    本章通过学习用二分法求方程近似解的的方法,使学生体会函数与方程之间的关系,通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用,进一步认识到函数是描述客观世界变化规律的基本数学模型,能初步运用函数思想解决一些生活中的简单问题。1.了解函数的零点、方程的根与图象交点三者之间的联系.2.会借助零点存在性定理判断函数的零点所在的大致区间.3.能借助函数单调性及图象判断零点个数.数学学科素养1.数学抽象:函数零点的概念;2.逻辑推理:借助图像判断零点个数;3.数学运算:求函数零点或零点所在区间;4.数学建模:通过由抽象到具体,由具体到一般的思想总结函数零点概念.重点:零点的概念,及零点与方程根的联系;难点:零点的概念的形成.

  • 北师大初中七年级数学下册与面积相关的等可能事件的概率教案

    方法总结:当某一事件A发生的可能性大小与相关图形的面积大小有关时,概率的计算方法是事件A所有可能结果所组成的图形的面积与所有可能结果组成的总图形面积之比,即P(A)=事件A所占图形面积总图形面积.概率的求法关键是要找准两点:(1)全部情况的总数;(2)符合条件的情况数目.二者的比值就是其发生的概率.探究点二:与面积有关的概率的应用如图,把一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,自由转动转盘,停止后指针落在B区域的概率为________.解析:∵一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,∴圆形转盘被等分成10份,其中B区域占2份,∴P(落在B区域)=210=15.故答案为15.三、板书设计1.与面积有关的等可能事件的概率P(A)= 2.与面积有关的概率的应用本课时所学习的内容多与实际相结合,因此教学过程中要引导学生展开丰富的联想,在日常生活中发现问题,并进行合理的整合归纳,选择适宜的数学方法来解决问题

  • 北师大初中七年级数学下册与摸球相关的等可能事件的概率教案

    1.进一步理解概率的意义并掌握计算事件发生概率的方法;(重点)2.了解事件发生的等可能性及游戏规则的公平性.(难点)一、情境导入一个箱子中放有红、黄、黑三个小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,那么这个游戏是否公平?二、合作探究探究点一:与摸球有关的等可能事件的概率【类型一】 摸球问题一个不透明的盒子中放有4个白色乒乓球和2个黄色乒乓球,所有乒乓球除颜色外完全相同,从中随机摸出1个乒乓球,摸出黄色乒乓球的概率为()A.23 B.12 C.13 D.16解析:根据题意可得不透明的袋子里装有6个乒乓球,其中2个黄色的,任意摸出1个,则P(摸到黄色乒乓球)=26=13.故选C.方法总结:概率的求法关键是找准两点:①全部情况的总数;②符合条件的情况数目.二者的比值就是其发生的概率.【类型二】 与代数知识相关的问题已知m为-9,-6,-5,-3,-2,2,3,5,6,9中随机取的一个数,则m4>100的概率为()A.15 B.310 C.12 D.35

  • 北师大初中八年级数学下册三角形的全等和等腰三角形的性质教案

    证明:过点A作AF∥DE,交BC于点F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法总结:利用等腰三角形“三线合一”得出结论时,先必须已知一个条件,这个条件可以是等腰三角形底边上的高,可以是底边上的中线,也可以是顶角的平分线.解题时,一般要用到其中的两条线互相重合.三、板书设计1.全等三角形的判定和性质2.等腰三角形的性质:等边对等角3.三线合一:在等腰三角形的底边上的高、中线、顶角的平分线中,只要知道其中一个条件,就能得出另外的两个结论.本节课由于采用了动手操作以及讨论交流等教学方法,有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对等腰三角形的“三线合一”性质理解不透彻,还需要在今后的教学和作业中进一步巩固和提高

  • 北师大初中数学九年级上册一元二次方程的根与系数的关系1教案

    方程有两个不相等的实数根.综上所述,m=3.易错提醒:本题由根与系数的关系求出字母m的值,但一定要代入判别式验算,字母m的取值必须使判别式大于0,这一点很容易被忽略.三、板书设计一元二次方程的根与系数的关系关系:如果方程ax2+bx+c=0(a≠0) 有两个实数根x1,x2,那么x1+x2 =-ba,x1x2=ca应用利用根与系数的关系求代数式的值已知方程一根,利用根与系数的关系求方程的另一根判别式及根与系数的关系的综合应用让学生经历探索,尝试发现韦达定理,感受不完全的归纳验证以及演绎证明.通过观察、实践、讨论等活动,经历发现问题、发现关系的过程,养成独立思考的习惯,培养学生观察、分析和综合判断的能力,激发学生发现规律的积极性,激励学生勇于探索的精神.通过交流互动,逐步养成合作的意识及严谨的治学精神.

  • 北师大初中数学九年级上册一元二次方程的根与系数的关系2教案

    3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;

  • 北师大初中数学九年级上册一元二次方程的根与系数的关系2教案

    2、猜想 一元二次方程的两个根 的和与积和原来的方程有什么联系?小组交流。3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;

  • 北师大初中九年级数学下册切线的判定及三角形的内切圆教案

    解析:(1)连接BI,根据I是△ABC的内心,得出∠1=∠2,∠3=∠4,再根据∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可证出IE=BE;(2)由三角形的内心,得到角平分线,根据等腰三角形的性质得到边相等,由等量代换得到四条边都相等,推出四边形是菱形.解:(1)BE=IE.理由如下:如图①,连接BI,∵I是△ABC的内心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四边形BECI是菱形.证明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的内心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)证得IE=BE,∴BE=CE=BI=IC,∴四边形BECI是菱形.方法总结:解决本题要掌握三角形的内心的性质,以及圆周角定理.

  • 北师大初中九年级数学下册直线和圆的位置关系及切线的性质教案

    解析:(1)由切线的性质得AB⊥BF,因为CD⊥AB,所以CD∥BF,由平行线的性质得∠ADC=∠F,由圆周角定理的推论得∠ABC=∠ADC,于是证得∠ABC=∠F;(2)连接BD.由直径所对的圆周角是直角得∠ADB=90°,因为∠ABF=90°,然后运用解直角三角形解答.(1)证明:∵BF为⊙O的切线,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半径为203.方法总结:运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.

上一页123...233234235236237238239240241242243244下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!