解析:从各点的位置可以发现A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),A6(2,2),A7(-2,2),A8(-2,-2),A9(3,-2),A10(3,3),A11(-3,3),A12(-3,-3),….仔细观察每四个点的横、纵坐标,发现存在着一定规律性.因为2015=503×4+3,所以点A2015在第二象限,纵坐标和横坐标互为相反数,所以A2015的坐标为(-504,504).故填(-504,504).方法总结:解决此类题常用的方法是通过对几种特殊情况的研究,归纳总结出一般规律,再根据一般规律探究特殊情况.三、板书设计轴对称与坐标变化关于坐标轴对称作图——轴对称变换通过本课时的学习,学生经历图形坐标变化与图形的轴对称之间的关系的探索过程,掌握空间与图形的基础知识和基本作图技能,丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维,激发数学学习的好奇心与求知欲.教学过程中学生能积极参与数学学习活动,积极交流合作,体验数学活动的乐趣.
方法总结:本题结合三角形内角和定理考查反证法,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况.如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.三、板书设计1.等腰三角形的判定定理:有两个角相等的三角形是等腰三角形(等角对等边).2.反证法(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.解决几何证明题时,应结合图形,联想我们已学过的定义、公理、定理等知识,寻找结论成立所需要的条件.要特别注意的是,不要遗漏题目中的已知条件.解题时学会分析,可以采用执果索因(从结论出发,探寻结论成立所需的条件)的方法.
方法总结:解题的关键是由题意列出不等式求出这个少算的内角的取值范围.探究点二:多边形的外角和定理【类型一】 已知各相等外角的度数,求多边形的边数正多边形的一个外角等于36°,则该多边形是正()A.八边形 B.九边形C.十边形 D.十一边形解析:正多边形的边数为360°÷36°=10,则这个多边形是正十边形.故选C.方法总结:如果已知正多边形的一个外角,求边数可直接利用外角和除以这个角即可.【类型二】 多边形内角和与外角和的综合运用一个多边形的内角和与外角和的和为540°,则它是()A.五边形 B.四边形C.三角形 D.不能确定解析:设这个多边形的边数为n,则依题意可得(n-2)×180°+360°=540°,解得n=3,∴这个多边形是三角形.故选C.方法总结:熟练掌握多边形的内角和定理及外角和定理,解题的关键是由已知等量关系列出方程从而解决问题.
三、典型例题,应用新知例2、一个盒子中有两个红球,两个白球和一个蓝球,这些球除颜色外其它都相同,从中随机摸出一球,记下颜色后放回,再从中随机摸出一球。求两次摸到的球的颜色能配成紫色的概率. 分析:把两个红球记为红1、红2;两个白球记为白1、白2.则列表格如下:总共有25种可能的结果,每种结果出现的可能性相同,能配成紫色的共4种(红1,蓝)(红2,蓝)(蓝,红1)(蓝,红2),所以P(能配成紫色)= 四、分层提高,完善新知1.用如图所示的两个转盘做“配紫色”游戏,每个转盘都被分成三个面积相等的三个扇形.请求出配成紫色的概率是多少?2.设计两个转盘做“配紫色”游戏,使游戏者获胜的概率为 五、课堂小结,回顾新知1. 利用树状图和列表法求概率时应注意什么?2. 你还有哪些收获和疑惑?
∴∠AEP=∠ACB,∠APE=∠ABC,∴△AEP∽△ACB.∴PECB=APAB,即1.89=2AB,解得AB=10(m).∴QB=AB-AP-PQ=10-2-6.5=1.5(m),即小明站在点Q时在路灯AD下影子的长度为1.5m;(2)同理可证△HQB∽△DAB,∴HQDA=QBAB,即1.8AD=1.510,解得AD=12(m).即路灯AD的高度为12m.方法总结:解决本题的关键是构造相似三角形,然后利用相似三角形的性质求出对应线段的长度.三、板书设计投影的概念与中心投影投影的概念:物体在光线的照射下,会 在地面或其他平面上留 下它的影子,这就是投影 现象中心投影概念:点光源的光线形成的 投影变化规律影子是生活中常见的现象,在探索物体与其投影关系的活动中,体会立体图形与平面图形的相互转化关系,发展学生的空间观念.通过在灯光下摆弄小棒、纸片,体会、观察影子大小和形状的变化情况,总结规律,培养学生观察问题、分析问题的能力.
五、回顾总结:总结:1、投影、中心投影 2、如何确定光源(小组交流总结.)六、自我检测:检测:晚上,小华在马路的一侧散步,对面有一路灯,当小华笔直地往前走时,他在这盏路灯下的影子也随之向前移动.小华头顶的影子所经过的路径是怎样的?它与小华所走的路线有何位置关系?七、课后延伸:延伸:课本128页习题5.1八、板书设计投影 做一做:投影线投影面 议一议:中心投影九、课后反思本节课先由皮影戏引出灯光与影子这个话题,接着经历实践、探索的过程,掌握了中心投影的含义,进一步根据灯光光线的特点,由实物与影子来确定路灯的位置,能画出在同一时刻另一物体的影子,还要求大家不仅要自己动手实践,还要和同伴互相交流.同时要用自己的语言加以描述,做到手、嘴、脑互相配合,培养大家的实践操作能力,合作交流能力,语言表达能力.
方程有两个不相等的实数根.综上所述,m=3.易错提醒:本题由根与系数的关系求出字母m的值,但一定要代入判别式验算,字母m的取值必须使判别式大于0,这一点很容易被忽略.三、板书设计一元二次方程的根与系数的关系关系:如果方程ax2+bx+c=0(a≠0) 有两个实数根x1,x2,那么x1+x2 =-ba,x1x2=ca应用利用根与系数的关系求代数式的值已知方程一根,利用根与系数的关系求方程的另一根判别式及根与系数的关系的综合应用让学生经历探索,尝试发现韦达定理,感受不完全的归纳验证以及演绎证明.通过观察、实践、讨论等活动,经历发现问题、发现关系的过程,养成独立思考的习惯,培养学生观察、分析和综合判断的能力,激发学生发现规律的积极性,激励学生勇于探索的精神.通过交流互动,逐步养成合作的意识及严谨的治学精神.
3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;
2、猜想 一元二次方程的两个根 的和与积和原来的方程有什么联系?小组交流。3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;
解:(1)设第一次落地时,抛物线的表达式为y=a(x-6)2+4,由已知:当x=0时,y=1,即1=36a+4,所以a=-112.所以函数表达式为y=-112(x-6)2+4或y=-112x2+x+1;(2)令y=0,则-112(x-6)2+4=0,所以(x-6)2=48,所以x1=43+6≈13,x2=-43+6<0(舍去).所以足球第一次落地距守门员约13米;(3)如图,第二次足球弹出后的距离为CD,根据题意:CD=EF(即相当于将抛物线AEMFC向下平移了2个单位).所以2=-112(x-6)2+4,解得x1=6-26,x2=6+26,所以CD=|x1-x2|=46≈10.所以BD=13-6+10=17(米).方法总结:解决此类问题的关键是先进行数学建模,将实际问题中的条件转化为数学问题中的条件.常有两个步骤:(1)根据题意得出二次函数的关系式,将实际问题转化为纯数学问题;(2)应用有关函数的性质作答.
一、欣赏《悍牛与牧童》﹙1﹚作品背景介绍:电影动画片《悍牛与牧童》完整的配乐,它始终配合动画片牧童驯服悍牛的剧情发展。﹙2﹚分段欣赏音乐,老师讲解、学生感受作品。﹙3﹚作品分析:在影片中贯穿始终,。体现电影主题音乐在不同的场合有不同的表现、不同的处理、不同的作用。﹙4﹚完整地欣赏音乐。二、讨论谈谈电影音乐的主要功能以及你所熟习的电影音乐:﹙1﹚突出主题作用。﹙2﹚抒情作用。﹙3﹚描绘作用。﹙4﹚背景气氛作用。﹙5﹚推动剧情发展作用。﹙6﹚结构统一作用。(7)小结。
1、初次聆听《悍牛与牧童》的高潮部分。师:谁能把你感受到的画面和大家分享一下。生1:很多人用力一起拉、抬东西的感觉。生2:像一群人围在一起跳舞,很活泼、很欢快的感觉。生3:一群人在庆祝节日。师:不管是跳舞、庆祝节日还是在抬东西,他们的情绪怎么样?生:很激昂。师:那刚才是什么样的声音让我们有这样的感受呢?生:有人的声音。师做出两种声音,让生到体会有哪些不同。师:刚才同学们听到的情绪变化,都来自神奇的音乐要素。比如说:速度、力度、音色、音高。正是这些音乐要素的变化,才会让我们产生与之对应的画面感。2、现在让我们再次欣赏这段音乐,体会音乐要素和画面的奇妙结合。师:这段音乐我们已经听了两遍了,大家觉得好听吗?生:好听或者不好听。
(一)播放动画片《悍牛与牧童》的音乐1、音乐中听到了什么声音?(人声、笛声、牛叫、打击乐器。)2、根据对音乐的理解选配画面。3、师:为什么要这样安排?音乐所表现的是什么情景?思考:(1)壮汉们驯服不了牛时,音乐是如何表现的。(音乐极不协合,旋律出现了半音关系。)(2)牧童驯服了牛时,音乐又是如何变化的。(音乐平稳流畅,一种回归自然的感觉。)(设计意图:让学生利用音乐的表现选择画面,讲解音乐表现的特点,让学生真正体验音乐、感受音乐、理解音乐)4、为什么只有牧童驯服了牛,说明什么道理呢?(1)学生分小组讨论回答。(人与动物要沟通,人要发解动物,爱护动物,带给我们最深的是人与动物、大自然间的和谐与质朴的关系。)
甲、乙、丙三方本着自愿合作的原则,协商同意签订本服务合同。甲、乙、丙三方必须遵守国家法律、法规,遵守北京市的有关规定;遵守北京家政服务协会制定的《北京家政服务行业公约》、《北京家政服务消费指南》和《北京家政服务人员职业守则》,以确保甲、乙、丙三方的合法权益不受侵犯。一、双方约定家政服务事项1、服务项目:乙方同意为甲方选派丙方,承担甲方的第 项服务:(1)一般家务;(2)孕、产妇护理;(3)婴、幼儿护理;(4)老人护理;(5)半自理病人护理;(6)不能自理病人护理;(7)医院护理病人;(8)其他。2、服务地点: 3、服务期限: 年 月 日起至 年 月 日止。4、工资:甲方每月支付丙方工资为: 元人民币,甲方应在丙方每完成一个月工作后的第二日,以现金形式一次付清丙方工资,不得以任何理由拖欠、克扣。二、三方权利义务:1、甲方应在签订合同书时出示有效身份证件,如实说明对丙方的具体要求,以及与丙方健康安全有关的家庭情况(如家中是否有传染病人等)。2、合同期内,甲方如对丙方的服务项目或服务类别要求改变,应与丙方协商,并适当调整工资报酬。
甲方乙方系父母与女儿关系。甲方自愿出资为乙方购买天勤苑小区一处房产赠与乙方。 双方自愿达成赠与房产协议如下:第一条:甲方自愿出资给乙方用于购买天勤苑小区号 楼 单元 层 户的一处房产并赠与乙方所有,乙方自愿接受该房款 。该房屋具体状况如下:(一)座落于四宝山街道办事处 路天勤苑小区,建筑面积_____平方米;(二)赠与房屋的所有权证证号为_____;(三)房屋平面图及其四至范围见附件一(四)土地使用权取得的方式为出让该房屋占用范围内的土地使用权随该房屋一并赠与乙方一人。该房屋的相关权益随该房屋一并赠与乙方一人。
甲、乙、丙三方本着自愿合作的原则,协商同意签订本服务合同。甲、乙、丙三方必须遵守国家法律、法规,遵守北京市的有关规定;遵守北京家政服务协会制定的《北京家政服务行业公约》、《北京家政服务消费指南》和《北京家政服务人员职业守则》,以确保甲、乙、丙三方的合法权益不受侵犯。一、双方约定家政服务事项1、服务项目:乙方同意为甲方选派丙方,承担甲方的第 项服务:(1)一般家务;(2)孕、产妇护理;(3)婴、幼儿护理;(4)老人护理;(5)半自理病人护理;(6)不能自理病人护理;(7)医院护理病人;(8)其他。2、服务地点: 3、服务期限: 年 月 日起至 年 月 日止。4、工资:甲方每月支付丙方工资为: 元人民币,甲方应在丙方每完成一个月工作后的第二日,以现金形式一次付清丙方工资,不得以任何理由拖欠、克扣。
赠与人 (以下简称甲方)、受赠人 (以下简称乙方),双方就赠与图书事宜订本合同,其条件如下:第一条 甲方将以下图书赠与乙方:1 全套 卷 册 出版社发行2全套 卷 册 书店发行第二条 甲方于 年 月 日前将上述图书交付予乙方。第三条 乙方将受赠的图书陈设于乙方协会的阅览室,并委托管理员,提供会员阅览,保管费用由乙方负担。
(2) 厦门经济特区成立40年来,在各项事业上都实现历史性跨越和突破, 为国家建设做出重要贡献。 厦门的发展表明当代中国最鲜明的特色是( )A.创新发展 B.经济建设 C.可持续发展 D.改革开放(3) 下列选择中,有利于解决我国当前社会主要矛盾的是( )①以经济建设为中心,解放发展生产力②坚持全面深化改革,实施创新驱动发展③推进城乡一体化发展,实现区域同步发展④兜住民生底线、补齐民生短板、办好民生实事A.①②③ B.①②④ C.①③④ D.②③④(4) 2021是 “十四五” 的开局之年。这一年,我国的战略科技力量发展加 快,改革开放推向纵深,民生得到有力和有效的保障,生态文明建设持续推进,┉┉ 。下列时事与此描述相符合的有 ( )①举行第四届中国国际进口博览会②退休人员的基本养老金实现17连涨③正式提出2030碳达峰和2060碳中和战略目标④成功举办24届北京冬奥会和13届北京冬残奥会A.①②③ B.①②④ C.①③④ D.②③④A.治国有常,而利民为本 B.民相亲在于心相通C.君远相知,不道云海深 D.人而无信,不知其可也
【作业分析】本题考查创新改变生活。防雨神器自动收晾衣服的灵感来源是下 雨忘记收衣服被批评,体现创新是来源于生活、来源于实践。“智能晴雨棚”打 破了传统的只能晾衣服的常规。而由教材内容可知,创新是改革开放的生命, 改革在不断创新中提升发展品质,所以②错误;故本题选 C2. (改编) 利用“安康码”自动定位,即可监测附近新冠肺炎感染病例发病点; 通过输入自己的手机号码,即可通过“通信大数据卡”判断自己是否到访过高 危地区;通过皖事通 APP“密接人员自查”即可查询自己是否曾与新冠肺炎感染 患者接触……疫情发生以来,大数据、健康码、无人机、机器人、测温仪等众 多科技创新成果纷纷登场,助力疫情防控,提高了抗击疫情的精准化水平。这 表明 ( )①标志着我国已经成为科技强国②实施创新驱动发展战略成效显著③创新应成为国家发展进步的中心工作④创新的目的是增进人类福祉,让生活更美好A.①② B.②③ C.①④ D.②④【评价实施主体】教师【评价标准】D【作业分析】本题考查科技创新改变生活中创新的重要性。我国现在还不是科 技强国,但科技自主创新能力不断增强,所以①说法错误。
总体评价结果: 。(四)作业分析与设计意图这是一项基于素质教育导向,以培育学生课程核心素养为目标的整课时作业设计。第一题作业以连线题的方式呈现。学生通过连线题掌握必备基础知识,完成教材知识的 整理和分析。第二题作业以演讲提纲的方式呈现。通过该题业设计与实施,引导学生了解中国科技创 新的现状,感受自主创新的重要性,探究如何为建设创新型国家而努力。引导同学们知道国 家的创新青少年责无旁贷,增强为国家创新做贡献的责任感和使命感,增强民族自尊心和自 豪感,增强政治认同。六、单元质量检测( 一) 单元质量检测内容1.单项选择题(1)要弘扬改革创新精神,推动思想再解放、改革再深入、工作再抓实,凝聚起全面深化 改革的强大力量,在新起点上实现新突破。下列关于改革开放的认识正确的有 ( )①改革开放是强国之路②改革开放推动了全世界的发展③改革开放解决了当前中国的一切问题