2、寻找教室里的不安全因素,并贴上标记提醒同伴。 活动准备: 1、小朋友户外活动的图片 2、红色标记 活动过程: 1、出示幼儿户外活动时的图片 提问:图上有谁?他们在玩什么?你觉得他们这样玩好吗?也许会发生什么事? (会摔跤、会打痛、会从玩具架上掉下来等等) 那你觉得应该怎么玩,小朋友才不会发生这样的事呢?(引导幼儿大胆交流)
方法总结:当某一事件A发生的可能性大小与相关图形的面积大小有关时,概率的计算方法是事件A所有可能结果所组成的图形的面积与所有可能结果组成的总图形面积之比,即P(A)=事件A所占图形面积总图形面积.概率的求法关键是要找准两点:(1)全部情况的总数;(2)符合条件的情况数目.二者的比值就是其发生的概率.探究点二:与面积有关的概率的应用如图,把一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,自由转动转盘,停止后指针落在B区域的概率为________.解析:∵一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,∴圆形转盘被等分成10份,其中B区域占2份,∴P(落在B区域)=210=15.故答案为15.三、板书设计1.与面积有关的等可能事件的概率P(A)= 2.与面积有关的概率的应用本课时所学习的内容多与实际相结合,因此教学过程中要引导学生展开丰富的联想,在日常生活中发现问题,并进行合理的整合归纳,选择适宜的数学方法来解决问题
1.进一步理解概率的意义并掌握计算事件发生概率的方法;(重点)2.了解事件发生的等可能性及游戏规则的公平性.(难点)一、情境导入一个箱子中放有红、黄、黑三个小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,那么这个游戏是否公平?二、合作探究探究点一:与摸球有关的等可能事件的概率【类型一】 摸球问题一个不透明的盒子中放有4个白色乒乓球和2个黄色乒乓球,所有乒乓球除颜色外完全相同,从中随机摸出1个乒乓球,摸出黄色乒乓球的概率为()A.23 B.12 C.13 D.16解析:根据题意可得不透明的袋子里装有6个乒乓球,其中2个黄色的,任意摸出1个,则P(摸到黄色乒乓球)=26=13.故选C.方法总结:概率的求法关键是找准两点:①全部情况的总数;②符合条件的情况数目.二者的比值就是其发生的概率.【类型二】 与代数知识相关的问题已知m为-9,-6,-5,-3,-2,2,3,5,6,9中随机取的一个数,则m4>100的概率为()A.15 B.310 C.12 D.35
证明:过点A作AF∥DE,交BC于点F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法总结:利用等腰三角形“三线合一”得出结论时,先必须已知一个条件,这个条件可以是等腰三角形底边上的高,可以是底边上的中线,也可以是顶角的平分线.解题时,一般要用到其中的两条线互相重合.三、板书设计1.全等三角形的判定和性质2.等腰三角形的性质:等边对等角3.三线合一:在等腰三角形的底边上的高、中线、顶角的平分线中,只要知道其中一个条件,就能得出另外的两个结论.本节课由于采用了动手操作以及讨论交流等教学方法,有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对等腰三角形的“三线合一”性质理解不透彻,还需要在今后的教学和作业中进一步巩固和提高
方程有两个不相等的实数根.综上所述,m=3.易错提醒:本题由根与系数的关系求出字母m的值,但一定要代入判别式验算,字母m的取值必须使判别式大于0,这一点很容易被忽略.三、板书设计一元二次方程的根与系数的关系关系:如果方程ax2+bx+c=0(a≠0) 有两个实数根x1,x2,那么x1+x2 =-ba,x1x2=ca应用利用根与系数的关系求代数式的值已知方程一根,利用根与系数的关系求方程的另一根判别式及根与系数的关系的综合应用让学生经历探索,尝试发现韦达定理,感受不完全的归纳验证以及演绎证明.通过观察、实践、讨论等活动,经历发现问题、发现关系的过程,养成独立思考的习惯,培养学生观察、分析和综合判断的能力,激发学生发现规律的积极性,激励学生勇于探索的精神.通过交流互动,逐步养成合作的意识及严谨的治学精神.
3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;
2、猜想 一元二次方程的两个根 的和与积和原来的方程有什么联系?小组交流。3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;
解析:(1)连接BI,根据I是△ABC的内心,得出∠1=∠2,∠3=∠4,再根据∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可证出IE=BE;(2)由三角形的内心,得到角平分线,根据等腰三角形的性质得到边相等,由等量代换得到四条边都相等,推出四边形是菱形.解:(1)BE=IE.理由如下:如图①,连接BI,∵I是△ABC的内心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四边形BECI是菱形.证明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的内心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)证得IE=BE,∴BE=CE=BI=IC,∴四边形BECI是菱形.方法总结:解决本题要掌握三角形的内心的性质,以及圆周角定理.
解析:(1)由切线的性质得AB⊥BF,因为CD⊥AB,所以CD∥BF,由平行线的性质得∠ADC=∠F,由圆周角定理的推论得∠ABC=∠ADC,于是证得∠ABC=∠F;(2)连接BD.由直径所对的圆周角是直角得∠ADB=90°,因为∠ABF=90°,然后运用解直角三角形解答.(1)证明:∵BF为⊙O的切线,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半径为203.方法总结:运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
国旗下的讲话稿从小爱科学当你们看着可爱的动画片,玩着迷人的电脑游戏,坐上快速的列车,接听着移动电话的时候,……你可曾意识到科学的力量,科学不仅改变了这个世界,也改变了我们的生活,科学就在我们身边。翻开20世纪的壮丽篇章,我们发现人类在这百年中不仅经历了血与火的洗礼,更创造了无数科学奇迹。19世纪法国著名科幻小说家凡尔纳的虚构,当时让人不可思议,他所幻想的登月旅行、飞机、远射程炮等,在20世纪都一一成为现实。在21世纪的今天,高科技更是无处不在。作为跨世纪的一代,我们又该以怎样的姿态去适应新世纪,担起新世纪的重担呢?科学技术的日新月异,使得科学不只为尖端技术服务,也越来越多地渗透到我们的日常生活之中,这就需要正处于青少年时代的我们热爱科学,学习科学。参加科技小组,阅读科技书籍,会使我们明白了许多道理。太阳能路灯,虚拟的电脑游戏,高科技信息的传送等等,一个个生动有趣的现象,是否激起了你探索科学的愿望。
∴∠AEP=∠ACB,∠APE=∠ABC,∴△AEP∽△ACB.∴PECB=APAB,即1.89=2AB,解得AB=10(m).∴QB=AB-AP-PQ=10-2-6.5=1.5(m),即小明站在点Q时在路灯AD下影子的长度为1.5m;(2)同理可证△HQB∽△DAB,∴HQDA=QBAB,即1.8AD=1.510,解得AD=12(m).即路灯AD的高度为12m.方法总结:解决本题的关键是构造相似三角形,然后利用相似三角形的性质求出对应线段的长度.三、板书设计投影的概念与中心投影投影的概念:物体在光线的照射下,会 在地面或其他平面上留 下它的影子,这就是投影 现象中心投影概念:点光源的光线形成的 投影变化规律影子是生活中常见的现象,在探索物体与其投影关系的活动中,体会立体图形与平面图形的相互转化关系,发展学生的空间观念.通过在灯光下摆弄小棒、纸片,体会、观察影子大小和形状的变化情况,总结规律,培养学生观察问题、分析问题的能力.
五、回顾总结:总结:1、投影、中心投影 2、如何确定光源(小组交流总结.)六、自我检测:检测:晚上,小华在马路的一侧散步,对面有一路灯,当小华笔直地往前走时,他在这盏路灯下的影子也随之向前移动.小华头顶的影子所经过的路径是怎样的?它与小华所走的路线有何位置关系?七、课后延伸:延伸:课本128页习题5.1八、板书设计投影 做一做:投影线投影面 议一议:中心投影九、课后反思本节课先由皮影戏引出灯光与影子这个话题,接着经历实践、探索的过程,掌握了中心投影的含义,进一步根据灯光光线的特点,由实物与影子来确定路灯的位置,能画出在同一时刻另一物体的影子,还要求大家不仅要自己动手实践,还要和同伴互相交流.同时要用自己的语言加以描述,做到手、嘴、脑互相配合,培养大家的实践操作能力,合作交流能力,语言表达能力.
创设情境,导入新课:你对母亲知多少师问1:我们5月份刚过了一个重要的节日,你知道是什么吗?----母亲节。师问2:那你知道妈妈的生日吗?(举手示意),每个妈妈都知道自己孩子的生日,请不知道的同学回家了解一下,多关心一下自己的父母。师问3:那你知道妈妈最爱吃的菜吗?你可以选择知道、不知道或者是没有爱吃的(拖动白板上相对应的表情符号)。请大家用不同的手势表示出来。我找3名同学统计各组的数据,写在黑板上(随机找3名学生数人数)。下面我来随机采访一下:你妈妈最喜欢吃的菜是什么?(教师随机采访,结合营养搭配和感恩教育)
目标:用夸张的手法画出小朋友穿着爸爸衣服的滑稽形象,体现出爸爸高大的形象。准备:爸爸的衣服一件,范画一张、蜡笔、勾线笔若干。过程:一、 出课题。(请一名幼儿穿着爸爸的大毛衣进活动室) XX小朋友今天跟平时有什么不一样?(衣服不是他的,很大) 你穿的是谁的衣服?(爸爸) 你们看,爸爸的衣服穿在小朋友身上是怎么样?(很大、肥肥的) 为什么?(爸爸的个子很高,爸爸身体胖胖的) 二、讲解示范。 你们想不想穿一穿爸爸的衣服,(想)教室里没有爸爸的衣服,我们来画一件爸爸的大衣服。(示范画爸爸的大衣服)我们来穿一穿爸爸的大衣服。(添画上幼儿的头、脚)三、幼儿作画,老师巡回指导。提醒幼儿要把爸爸的衣服画的大大的,显示出爸爸高大的形象。四、结束。让我们穿上爸爸的衣服到外面去。
自然界中充满着神奇有趣的科学现象,就拿“风”这一自然现象来说,一年四季天天都和我们会面,是孩子们从能来到户外的那一刻起就能感受到的现象。现在正值春天,是孩子们探索风的好季节。我们江南春天的天气,就如娃娃的脸说变就变。白天的气温很高,到了晚上却会突然刮起大风来,气温也骤降。在幼儿园,会听到大班孩子们在议论:我看见迎春花的花瓣被风吹到了地上;大风把垃圾吹得到处都是,清洁工人又要重新打扫了;今天有点冷,妈妈又给我多穿了衣服……从孩子的话中,发现“风”是孩子需要的、感兴趣的内容。追随孩子的经验和生活,就让大班孩子围绕“风”自主生成一系列的探索“风的奥秘”的活动。大班幼儿对周围事物、现象感兴趣,有好奇心和求知欲,而且有些幼儿能初步运用感官动手动脑,探索问题。但孩子有时会对事物现象凭主观臆断,缺乏科学性。希望幼儿在主动学习的过程中,大胆探索,培养幼儿对现象能进行客观描述,以事实为依据得出推理,懂得科学存在于客观事实,而不是教师的头脑之中。
自然界中充满着神奇有趣的科学现象,就拿“风”这一自然现象来说,一年四季天天都和我们会面,是孩子们从能来到户外的那一刻起就能感受到的现象。现在正值春天,是孩子们探索风的好季节。我们江南春天的天气,就如娃娃的脸说变就变。白天的气温很高,到了晚上却会突然刮起大风来,气温也骤降。在幼儿园,会听到大班孩子们在议论:我看见迎春花的花瓣被风吹到了地上;大风把垃圾吹得到处都是,清洁工人又要重新打扫了;今天有点冷,妈妈又给我多穿了衣服……从孩子的话中,发现“风”是孩子需要的、感兴趣的内容。追随孩子的经验和生活,就让大班孩子围绕“风”自主生成一系列的探索“风的奥秘”的活动。大班幼儿对周围事物、现象感兴趣,有好奇心和求知欲,而且有些幼儿能初步运用感官动手动脑,探索问题。但孩子有时会对事物现象凭主观臆断,缺乏科学性。希望幼儿在主动学习的过程中,大胆探索,培养幼儿对现象能进行客观描述,以事实为依据得出推理,懂得科学存在于客观事实,而不是教师的头脑之中。
活动材料来之于幼儿常态生活《纲要》中指出:幼儿园教育活动的选择要做到“既贴近幼儿的生活来选择幼儿感兴趣的事物和问题,又有助于拓展幼儿的教育和视野”。根据这个原则,教育者必须关注与幼儿最贴近、最生动、最感性的现实生活,通过价值判断、从中发掘、筛选有利于幼儿健康发展的生活作为幼儿园课程的教育内容。同时,活动的内容决定了活动的材料来自于幼儿的日常生活。秋季来临,天气渐凉,小朋友来园时穿外套的越来越多,随着时代的发展,时装潮流同样也影响着孩子们的日常穿着,幼儿外套的款式可谓琳琅满目。外套的色彩、图案、面料、装饰可以说有很多教学价值蕴藏其中,而且我们每天接触的日常用品是最为方便最简便的教学具,不要刻意的制作不要精心的准备,随手可得,又最能引发幼儿对身边事物的关注,继而在关注的基础上发展幼儿相关经验。活动价值在确定目标过程中逐步挖掘在刚开始的活动设想中我对“我的外套”的教学价值分析是:1.观察分辨不同与相同不同在于颜色、花纹图案、大小、材料;相同在于衣服结构衣领衣袖纽扣。2.在生活情境中穿脱、整理的能力。但是继而深入思考一下发现自己把幼儿感知范围散的点很多,范围很宽泛,幼儿的学习是粗浅的、全面的“百科全书”式的。在一个集体活动中如何发挥出更有效的教学价值呢?小朋友的一件外套是不是只有科学常识方面的教学价值了呢?外套上的一些设计的细节不同能不能挖掘更多的教学价值呢?于是我综合分析了外套中隐含的一些教学价值,从幼儿的经验和领域学科特点出发,将常识性的知识经验积累和数学能力相结合重新调整教学设计,对活动的重点进行重新调整:1.在叠放的衣服中找出自己的外套,对观察外套有兴趣。2.尝试在游戏中按外套的一个特征进行分类、数数。活动环节在目标引领下尝试设计
2、目标定位:《纲要》指出,五大领域的内容相互渗透,从不同的角度促进幼儿情感、态度、能力、知识、技能等方面的发展,因此,根据幼儿的年龄特点和实际情况,我制定了以下三个方面的目标:(1)让幼儿在玩水中感知水的特性,知道水是无色透明的、无味的,是会流动的,具有浮力和溶解性的特点。(2)通过动手操作实验,发展幼儿的观察能力和动脑动手能力。(3)教育幼儿要节约用水。
二、目标定位活动目标的制定应体现它的教育性、价值型和实际性,活动目标既是整个教育活动的起点和归宿,同时对活动也起着导向作用。因此从满足幼儿认知、情感、能力的发展需要,我制定了以下活动目标:1.知识目标:感知淀粉遇碘会变成蓝。2.技能目标:能运用各种感官,动手动脑,探究和解决问题。3.情感目标:乐意与同伴合作,体验活动的乐趣。重点:通过操作,感知淀粉遇到碘会变蓝。难点:尝试运用淀粉遇到碘变蓝的原理发现、探究和解决问题。三、活动准备:活动准备为活动的成功开展提供了可能,在科学活动中材料的结构及投放很重要,它直接关系到能否构成问题情境的探究点,有时甚至影响到活动的成败,因此,我为活动做了以下的准备:慢羊羊村长头饰、馒头、土豆、白菜、胡萝卜、香蕉、梨、标有字母A与B的奶粉,棉签、图卡、笔。四、教法与学法:新《纲要》指出:教师应成为学习活动的支持者、合作者、引导者,活动中,教师不仅要用生动的语言,神秘的动作来感染幼儿外,还要积极调动幼儿的积极性,让幼儿真正成为学习的主体,创造条件让幼儿参与探索活动,在活动中,我使用的教法有观察法、示范操作法、练习法、经验迁移法。多种教学方法的整合,达到了科学性、愉悦性、艺术性的和谐统一。
说活动价值:我们常常在有水的日子里一点都不觉得用水的方便,没水的日子里才发现一点一滴水的珍贵。环境在我们身边一点点恶化,但我们每个人却常常视而不见。本次活动的价值点就是想通过现场的实验活动使孩子们亲身感受到水对我们生活的重要以及保护水资源的重要。因此本次活动的目标定位为:1、通过实验感知水变脏容易和脏水变干净困难的道理。2、感知水在人们生活中的重要,树立良好的环保意识。3、有良好的坚持参与探究的科学品质和积极动脑解决问题的能力。说目标定位:目标是集体教学活动的核心和精髓,明确细致的目标将帮助教师精确地描绘出活动的重点和难点。在本次活动中,我把目标定位在三个方面: