教学反思:京剧是我们的“国粹”,既称“国粹”,自是国之经典,京剧博大精深,只要能够静下心来去听,静下心来去看,能够深入进去,一定能找到你喜欢的,有意思的内容,我们在课上了解京剧行当时很多学生都很感兴趣,学生对不同行当人物的装扮、亮相,一招一式都看的特别投入,有的学生还跟着表演起来,看的出学生觉得很有意思,至少能吸引他们的注意,然而在歌曲学唱中效果就一般了,由于歌曲京韵味很浓,一字多音特别多,因此,很多学生唱不准,京韵味就更难做出来了,课堂教学中,我只能以让学生多听、多模仿为主,然而很多学生不认真,自然是觉得没兴趣,因此,学唱效果一般。或许京剧流行的年代离学生们太远,平时接触的又少,因此,提倡的“京剧进课堂”的想法并不是我们一朝一夕能达到的,京剧进课堂,能否也唱进孩子们的心里?需要我们所有人重视并参与,让我们共同为京剧的美好明天而努力吧。
我说:同学们,你们觉得用独唱的的演唱形式就能把这首歌曲的情感、意境表现的非常好呢?学生回答。我对学生说:现在分组讨论,把你们认为合适的演唱方法表演给大家。(学生分组讨论)讨论结束,师生相互交流。最终确定前半段由女声演唱,表现出轻柔美好的声音;后半段由男生演唱,表现出萤火虫无私奉献光亮的精神。这一设计旨在拓宽学生的视野,丰富教学内涵,进一步加深对音乐情感的体验,激发学生对萤火虫的赞美之情。培养学生的想象力、创造力和合作协调能力。六、小结本课从情境导入、引导学生反复聆听音乐。通过师生共同的音乐活动,使学生轻松的学会歌曲。通过表现创造分组以不同的艺术形式进行创编活动进一步加深对音乐情感的体验,激发对家乡的热爱之情。培养学生的想象力、创造力和合作协调能力。最后,我指导学生在我的钢琴伴奏下再次有感情地演唱歌曲,结束本课教学。
2.如何找一条线段的黄金分割点,以及会画黄金矩形.3.能根据定义判断某一点是否为一条线段的黄金分割点.Ⅳ.课后作业习题4.8Ⅴ.活动与探究要配制一种新农药,需要兑水稀释,兑多少才好呢?太浓太稀都不行.什么比例最合适,要通过试验来确定.如果知道稀释的倍数在1000和2000之间,那么,可以把1000和2000看作线段的两个端点,选择AB的黄金分割点C作为第一个试验点,C点的数值可以算是1000+(2000-1000)×0.618= 1618.试验的结果,如果按1618倍,水兑得过多,稀释效果不理想,可以进行第二次试 验.这次的试验点应该选AC的黄金分割点D,D的位置是1000+(1618-1000)×0.618,约等于1382,如果D点还不理想,可以按黄金分割的方法继续试验下去.如果太浓,可以选DC之间的黄金分割 点 ;如果太稀,可以选AD之间的黄金分割点,用这样的方法,可以较快地找到合适的浓度数据.这种方法叫做“黄金分割法”.用这样的方法进行科学试验,可以用最少的试验次数找到最佳的数据,既节省了时间,也节约了原材料.●板书设计
若a,b,c都是不等于零的数,且a+bc=b+ca=c+ab=k,求k的值.解:当a+b+c≠0时,由a+bc=b+ca=c+ab=k,得a+b+b+c+c+aa+b+c=k,则k=2(a+b+c)a+b+c=2;当a+b+c=0时,则有a+b=-c.此时k=a+bc=-cc=-1.综上所述,k的值是2或-1.易错提醒:运用等比性质的条件是分母之和不等于0,往往忽视这一隐含条件而出错.本题题目中并没有交代a+b+c≠0,所以应分两种情况讨论,容易出现的错误是忽略讨论a+b+c=0这种情况.三、板书设计比例的性质基本性质:如果ab=cd,那么ad=bc如果ad=bc(a,b,c,d都不等于0),那么ab=cd等比性质:如果ab=cd=…=mn(b+d+…+n≠0), 那么a+c+…+mb+d+…+n=ab经历比例的性质的探索过程,体会类比的思想,提高学生探究、归纳的能力.通过问题情境的创设和解决过程进一步体会数学与生活的紧密联系,体会数学的思维方式,增强学习数学的兴趣.
解:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠2=∠3.又由折叠知△BC′D≌△BCD,∴∠1=∠2.∴∠1=∠3.∴BE=DE.设BE=DE=x,则AE=8-x.∵在Rt△ABE中,AB2+AE2=BE2,∴42+(8-x)2=x2.解得x=5,即DE=5.∴S△BED=12DE·AB=12×5×4=10.方法总结:矩形的折叠问题是常见的问题,本题的易错点是对△BED是等腰三角形认识不足,解题的关键是对折叠后的几何形状要有一个正确的分析.三、板书设计矩形矩形的定义:有一个角是直角的平行四边形 叫做矩形矩形的性质四个角都是直角两组对边分别平行且相等对角线互相平分且相等经历矩形的概念和性质的探索过程,把握平行四边形的演变过程,迁移到矩形的概念与性质上来,明确矩形是特殊的平行四边形.培养学生的推理能力以及自主合作精神,掌握几何思维方法,体会逻辑推理的思维价值.
2.已知:如图 ,在△ABC中,∠C=90°, CD为中线,延长CD到点E,使得 DE=CD.连结AE,BE,则四边形ACBE为矩形吗?说明理由。答案:四边形ACBE是矩形.因为CD是Rt△ACB斜边上的中线,所以DA=DC=DB,又因为DE=CD,所以DA=DC=DB=DE,所以四边形ABCD是矩形(对角线相等且互相平分的四边形是矩形)。四、课堂检测:1.下列说法正确的是( )A.有一组对角是直角的四边形一定是矩形 B.有一组邻角是直角的四边形一定是矩形C.对角线互相平分的四边形是矩形 D.对角互补的平行四边形是矩形2. 矩形各角平分线围成的四边形是( )A.平行四边形 B.矩形 C.菱形 D.正方形3. 下列判定矩形的说法是否正确(1)有一个角是直角的四边形是矩形 ( )(2)四个角都是直角的四边形是矩形 ( )(3)四个角都相等的四边形是矩形 ( ) (4)对角线相等的四边形是矩形 ( )(5)对角线相等且互相垂直的四边形是矩形 ( )(6)对角线相等且互相平分的四边形是矩形 ( )4. 在四边形ABCD中,AB=DC,AD=BC.请再添加一个条件,使四边形ABCD是矩形.你添加的条件是 .(写出一种即可)
(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形.又∵EF=BE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为23,∴菱形的面积为4×23=83.方法总结:判定一个四边形是菱形时,要结合条件灵活选择方法.如果可以证明四条边相等,可直接证出菱形;如果只能证出一组邻边相等或对角线互相垂直,可以尝试证出这个四边形是平行四边形,然后用定义法或判定定理1来证明菱形.三、板书设计菱形的判 定有一组邻边相等的平行四边形是菱形(定义)四边相等的四边形是菱形对角线互相垂直的平行四边形是菱形对角线互相垂直平分的四边形是菱形 经历菱形的证明、猜想的过程,进一步提高学生的推理论证能力,体会证明过程中所运用的归纳概括以及转化等数学方法.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.
小说精心设计,以“我”回忆往事的视角来叙述,其他人物的态度和行动,都是从“我”的眼里看到的;对其他人物的感受和评述,也都是从“我”的角度表达的。这样写既有利于拉开适当的距离,为小说主题的展开留下空间,同时也有利于安排情节的曲折变化,避免多余的解释说明。【设计意图】内容决定形式,形式服务内容。在逐层深入理解课文时,穿插对写作技巧的讲解与点拨,要求学生在朗读中细细品味,有助于学生深入学习与运用。四、拓展,悟人生1.拓展阅读课外阅读《项链》。2.发散思维有一首歌里唱道:“有钱没钱,回家过年。”假如你是若瑟夫,当你走到于勒面前时,你会对他说些什么呢?【设计意图】学以致用,启迪人生智慧,形成正确的人生观、价值观。结束语:金钱扭曲了人性,撕裂了亲情。观照生活,思索人生,我们会发现亲情带来的温暖远胜于金钱,让我们一起说——让人间充满爱!
3.归纳主旨本文通过描写范进参加乡试中了举人一事,运用夸张的手法刻画了他为科举考试喜极而疯的形象,用岳丈在范进中举前后的极其鲜明的肢体动作和言语表情,以及中举后邻居对他的前呼后拥和乡绅赠屋等行为,刻画了一个趋炎附势、热衷仕途、好官名利禄的封建知识分子形象,并且谴责了世态炎凉的可耻的社会风气,对当时的社会及其阴暗面进行了辛辣的讽刺。【设计意图】本板块研读品析了文本中的若干次要人物,引导学生理解次要人物的作用,体会本文侧面烘托的写法,揭示社会环境,点明范进悲剧的必然性,进一步挖掘本文的主旨,使学生理解文本深刻的现实意义。结束语:范进,一个让人啼笑皆非的人物,他卑微可怜,热衷科举,丑态百出。文章塑造这个下层知识分子的典型形象,深刻揭露并辛辣地讽刺了封建科举制度,揭露了封建科举制度的腐朽及其对读书人的腐蚀和毒害。如今,科举制度早已被废除,我们有着公平的人才选拔方式,希望同学们可以珍惜每一个机会,好好努力,实现自己的理想抱负。【板书设计】
【教学目标】 1.了解诗歌意象,读出诗歌意境。2.在诵读中理解诗人的情感,感受诗歌的艺术魅力。3.能够在朗诵时通过重音、停连、节奏等,把握诗歌的感情基调,读出感情,读出韵律。【教学课时】1课时【教学过程】一、自由吟诵,导入新课师:“腹有诗书气自华”,读诗可以陶冶情操,丰富文化内涵,还可以提升气质。大家从小就开始接触诗歌,诗歌应该怎样去吟诵呢?哪位同学愿意为大家示范一下?(生朗诵诗歌)师:这位同学刚才朗诵得很好,但是还没有将诗歌的情感完全读出来。那么,我们该如何通过诵读,读出诗歌的意境、诗人的情感呢?今天,我们就一起来探讨一下诗歌的吟诵方法。【设计意图】活跃课堂气氛,提高学生参与度,对于训练诗歌朗诵是很有必要的。以学生吟诵诗歌的方式导入新课,可以较大程度地激发他们的学习兴趣。
1.发散思维诸葛亮出山后为刘备鞠躬尽瘁,死而后已,勤勉一生,做了许多大事。关于诸葛亮的故事,你还知道多少呢?请列举出来。预设:火烧博望坡、火烧新野、舌战群儒、智激周瑜、七星坛借东风、巧布八阵图、空城计、挥泪斩马谡、七擒孟获、六出祁山、星落五丈原……2.拓展阅读布置学生课后阅读《三国演义》中相关回目(第四十、四十三、四十四、四十九、八十四、九十、九十六、一百零三回等)。【设计意图】《三国演义》中关于诸葛亮的章节很多,这样拓展,一是让已经读完《三国演义》的学生积极展示他的所读所知,二是有效激发还未读完《三国演义》这部书的同学的阅读兴趣。结束语:虽然“古今多少事,都付笑谈中”,但请同学们记住刘备对人才的尊重。尤其在日新月异的当下,创新和发展,都离不开人才,可以毫不夸张地说,得人才者得制高点,得人才者得持续发展,得人才者得最终胜利!
预设:在月色和清风中,我的影子开始起舞,恍惚中似乎天堂就在我的眼前。影子随着月光转过那雕梁画栋,穿过阁楼的阻拦。何人在此处失眠?何人在此处低吟?或许我不该怨恨这让我想起离愁的月色。月色有什么错?错的只是我。世上不会有永远,有团聚就有分离。人的悲喜离别就是一场自古以来的痛苦,就像月也有圆缺的苦恼。完美从来都不属于人间。远方的人啊,希望你的生活永远美好,大家虽远隔千里,也能共享这美好皎洁的月光。【设计意图】仅仅停留在理解、体悟上,学生难以感同身受。若动动笔头,用自己的话来表述,学生会更懂词意更解词心,可能会有更多感悟。五、唱月留香课外学唱《但愿人长久》、《思乡曲》(霍勇)等歌曲,积累名家咏月的名句,拓宽视野,加深体验。【设计意图】在比较中学诗词,在歌唱中学诗词,唇齿留香。余音绕梁,三日不绝。结束语:“天若有情天亦老,月如无恨月长圆。”我们在生活中也会有各种各样的遗憾。面对生活中的风雨坎坷,请读一读苏轼的词吧,愿我们的心灵永远澄澈明净,愿我们的人生更加豁达从容!
同是写景,第2段要读出激昂豪迈之情。例如:衔远山,吞长江,浩浩汤汤,横无际涯,朝晖夕阴,气象万千,此则岳阳楼之大观也。第3段要读出悲凉失落之感。例如:若夫淫雨霏霏,连月不开,阴风怒号,浊浪排空,日星隐曜,山岳潜形,商旅不行,樯倾楫摧,薄暮冥冥,虎啸猿啼。第4段要读出欢快愉悦之情。例如:至若春和景明,波澜不惊,上下天光,一碧万顷,沙鸥翔集,锦鳞游泳,岸芷汀兰,郁郁青青。【设计意图】本文生字词较多,一定要先读准字音,认准字形结构。从句式看,骈散结合,读起来朗朗上口,可以感受音韵美。加强诵读训练,可以培养语感,快速成诵,促进感知文本内容。4.寻找读,积累词句(1)找出文中出现的成语,并探究它们在今天的意义。课件出示:气象万千:形容景色和事物多种多样,非常壮观。政通人和:政事顺遂,人民和乐。形容国泰民安。百废具兴:各种被废置的或该办未办的事业都兴办起来。(在现代汉语中,“具”写作“俱”)
问题二:上述问题中,甲、乙的平均数、中位数、众数相同,但二者的射击成绩存在差异,那么,如何度量这种差异呢?我们可以利用极差进行度量。根据上述数据计算得:甲的极差=10-4=6 乙的极差=9-5=4极差在一定程度上刻画了数据的离散程度。由极差发现甲的成绩波动范围比乙的大。但由于极差只使用了数据中最大、最小两个值的信息,所含的信息量很少。也就是说,极差度量出的差异误差较大。问题三:你还能想出其他刻画数据离散程度的办法吗?我们知道,如果射击的成绩很稳定,那么大多数的射击成绩离平均成绩不会太远;相反,如果射击的成绩波动幅度很大,那么大多数的射击成绩离平均成绩会比较远。因此,我们可以通过这两组射击成绩与它们的平均成绩的“平均距离”来度量成绩的波动幅度。
可以通过下面的步骤计算一组n个数据的第p百分位数:第一步:按从小到大排列原始数据;第二步:计算i=n×p%;第三步:若i不是整数,而大于i的比邻整数位j,则第p百分位数为第j项数据;若i是整数,则第p百分位数为第i项与第i+1项的平均数。我们在初中学过的中位数,相当于是第50百分位数。在实际应用中,除了中位数外,常用的分位数还有第25百分位数,第75百分位数。这三个分位数把一组由小到大排列后的数据分成四等份,因此称为四分位数。其中第25百分位数也称为第一四分位数或下四分位数等,第75百分位数也称为第三四分位数或上四分位数等。另外,像第1百分位数,第5百分位数,第95百分位数,和第99百分位数在统计中也经常被使用。例2、根据下列样本数据,估计树人中学高一年级女生第25,50,75百分位数。
(2)平均数受数据中的极端值(2个95)影响较大,使平均数在估计总体时可靠性降低,10天的用水量有8天都在平均值以下。故用中位数来估计每天的用水量更合适。1、样本的数字特征:众数、中位数和平均数;2、用样本频率分布直方图估计样本的众数、中位数、平均数。(1)众数规定为频率分布直方图中最高矩形下端的中点;(2)中位数两边的直方图的面积相等;(3)频率分布直方图中每个小矩形的面积与小矩形底边中点的横坐标之积相加,就是样本数据的估值平均数。学生回顾本节课知识点,教师补充。 让学生掌握本节课知识点,并能够灵活运用。
(一)例题引入篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分。某队在10场比赛中得到16分,那么这个队胜负场数分别是多少?方法一:(利用之前的知识,学生自己列出并求解)解:设剩X场,则负(10-X)场。方程:2X+(10-X)=16方法二:(老师带领学生一起列出方程组)解:设胜X场,负Y场。根据:胜的场数+负的场数=总场数 胜场积分+负场积分=总积分得到:X+Y=10 2X+Y=16
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.2正弦型函数. *创设情境 兴趣导入 与正弦函数图像的做法类似,可以用“五点法”作出正弦型函数的图像.正弦型函数的图像叫做正弦型曲线. 介绍 播放 课件 质疑 了解 观看 课件 思考 学生自然的走向知识点 0 5*巩固知识 典型例题 例3 作出函数在一个周期内的简图. 分析 函数与函数的周期都是,最大值都是2,最小值都是-2. 解 为求出图像上五个关键点的横坐标,分别令,,,,,求出对应的值与函数的值,列表1-1如下: 表 001000200 以表中每组的值为坐标,描出对应五个关键点(,0)、(,2)、(,0)、(,?2)、(,0).用光滑的曲线联结各点,得到函数在一个周期内的图像(如图). 图 引领 讲解 说明 引领 观察 思考 主动 求解 观察 通过 例题 进一 步领 会 注意 观察 学生 是否 理解 知识 点 15
一、定义: ,这一公式表示的定理叫做二项式定理,其中公式右边的多项式叫做的二项展开式;上述二项展开式中各项的系数 叫做二项式系数,第项叫做二项展开式的通项,用表示;叫做二项展开式的通项公式.二、二项展开式的特点与功能1. 二项展开式的特点项数:二项展开式共(二项式的指数+1)项;指数:二项展开式各项的第一字母依次降幂(其幂指数等于相应二项式系数的下标与上标的差),第二字母依次升幂(其幂指数等于二项式系数的上标),并且每一项中两个字母的系数之和均等于二项式的指数;系数:各项的二项式系数下标等于二项式指数;上标等于该项的项数减去1(或等于第二字母的幂指数;2. 二项展开式的功能注意到二项展开式的各项均含有不同的组合数,若赋予a,b不同的取值,则二项式展开式演变成一个组合恒等式.因此,揭示二项式定理的恒等式为组合恒等式的“母函数”,它是解决组合多项式问题的原始依据.又注意到在的二项展开式中,若将各项中组合数以外的因子视为这一组合数的系数,则易见展开式中各组合数的系数依次成等比数列.因此,解决组合数的系数依次成等比数列的求值或证明问题,二项式公式也是不可或缺的理论依据.
重点分析:本节课的重点是离散型随机变量的概率分布,难点是理解离散型随机变量的概念. 离散型随机变量 突破难点的方法: 函数的自变量 随机变量 连续型随机变量 函数可以列表 X123456p 2 4 6 8 10 12