首先列表,利用未知数的取值,根据一元二次方程的一般形式ax2+bx+c=0(a,b,c为常数,a≠0)分别计算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知数的大致取值范围,然后再进一步在这个范围内取值,逐步缩小范围,直到所要求的精确度为止.(2)在估计一元二次方程根的取值范围时,当ax2+bx+c(a≠0)的值由正变负或由负变正时,x的取值范围很重要,因为只有在这个范围内,才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板书设计一元二次方程的解的估算,采用“夹逼法”:(1)先根据实际问题确定其解的大致范围;(2)再通过列表,具体计算,进行两边“夹逼”,逐步获得其近似解.“估算”在求解实际生活中一些较为复杂的方程时应用广泛.在本节课中让学生体会用“夹逼”的思想解决一元二次方程的解或近似解的方法.教学设计上,强调自主学习,注重合作交流,在探究过程中获得数学活动的经验,提高探究、发现和创新的能力.
三:巩固新知1、判断对错:(1)如果一个菱形的两条对角线相等,那么它一定是正方形. ( )(2)如果一个矩形的两条对角线互相垂直,那么它一定是正方形.( )(3)两条对角线互相垂直平分且相等的四边形,一定是正方形. ( )(4)四条边相等,且有一个角是直角的四边形是正方形. ( )2、已知:点E、F、G、H分别是正方形ABCD四条边上的中点,并且E、F、G、H分别是AB、BC、CD、AD的中点.求证:四边形EFGH是正方形.3、自己完成课本P23的议一议四、小结1.正方形的判定方法.2.了解正方形、矩形、菱形之间的联系与区别,体验事物之间是相互联系但又有区别的辩证唯物主义观点.3.本节的收获与疑惑.
∴OE=OF=OG=OH.又∵EG⊥FH,∴四边形EFGH为菱形.∵EO+GO=FO+HO,即EG=HF,∴四边形EFGH为正方形.方法总结:对角线互相垂直平分且相等的四边形是正方形.探究点二:正方形、菱形、矩形与平行四边形之间的关系填空:(1)对角线________________的四边形是矩形;(2)对角线____________的平行四边形是矩形;(3)对角线__________的平行四边形是正方形;(4)对角线________________的矩形是正方形;(5)对角线________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法总结:从对角线上分析特殊四边形之间的关系应充分考虑特殊四边形的性质与判别,防止混淆.菱形、矩形、正方形都是平行四边形,且是特殊的平行四边形,特殊之处在于:矩形是有一个角为直角的平行四边形;菱形是有一组邻边相等的平行四边形;而正方形是兼具两者特性的更特殊的平行四边形,它既是矩形,又是菱形.
1)正方形的边长为4cm,则周长为( ),面积为( ) ,对角线长为( );2))正方形ABCD中,对角线AC、BD交于O点,AC=4 cm,则正方形的边长为( ), 周长为( ),面积为( )3)在正方形ABCD中,AB=12 cm,对角线AC、BD相交于O,OA= ,AC= 。4) 1、正方形具有而矩形不一定具有的性质是( ) A、四个角相等 B、对角线互相垂直平分 C、对角互补 D、对角线相等. 5)、正方形具有而菱形不一定具有的性质( ) A、四条边相等 B对角线互相垂直平分 C对角线平分一组对角 D对角线相等. 6)、正方形对角线长6,则它的面积为_________ ,周长为________. 7)、顺次连接正方形各边中点的小正方形的面积是原正方形面积的( )A.1/2 B.1/3 C.1/4 D.1/ 5四:范例讲解:1、(课本P21例1)学生自己阅读课本内容、注意证明过程的书写2、 如图,分别以△ABC的边AB,AC为一边向外画正方形AEDB和正方形ACFG,连接CE,BG.求证:BG=CE
1.了解扇形的概念,理解n°的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用;(重点)2.通过复习圆的周长、圆的面积公式,探索n°的圆心角所对的弧长l=nπR180和扇形面积S扇=nπR2360的计算公式,并应用这些公式解决一些问题.(难点)一、情境导入如图是圆弧形状的铁轨示意图,其中铁轨的半径为100米,圆心角为90°.你能求出这段铁轨的长度吗(π 取3.14)?我们容易看出这段铁轨是圆周长的14,所以铁轨的长度l≈2×3.14×1004=157(米). 如果圆心角是任意的角度,如何计算它所对的弧长呢?二、合作探究探究点一:弧长公式【类型一】 求弧长如图,某厂生产横截面直径为7cm的圆柱形罐头盒,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头盒侧面所形成的弧的度数为90°,则“蘑菇罐头”字样的长度为()
解析:(1)把点A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根据对称轴是x=-3,求出b=6,即可得出答案;(2)根据CD∥x轴,得出点C与点D关于x=-3对称,根据点C在对称轴左侧,且CD=8,求出点C的横坐标和纵坐标,再根据点B的坐标为(0,5),求出△BCD中CD边上的高,即可求出△BCD的面积.解:(1)把点A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵对称轴是x=-3,∴-b2=-3,∴b=6,∴c=5,∴抛物线的解析式是y=x2+6x+5;(2)∵CD∥x轴,∴点C与点D关于x=-3对称.∵点C在对称轴左侧,且CD=8,∴点C的横坐标为-7,∴点C的纵坐标为(-7)2+6×(-7)+5=12.∵点B的坐标为(0,5),∴△BCD中CD边上的高为12-5=7,∴△BCD的面积=12×8×7=28.方法总结:此题考查了待定系数法求二次函数的解析式以及二次函数的图象和性质,注意掌握数形结合思想与方程思想的应用.
③设每件衬衣降价x元,获得的利润为y元,则定价为 元 ,每件利润为 元 ,每星期多卖 件,实际卖出 件。所以Y= 。(0<X<20)何时有最大利润,最大利润为多少元?比较以上两种可能,衬衣定价多少元时,才能使利润最大?☆ 归纳反思 ☆总结得出求最值问题的一般步骤:(1)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;(2)在自变量的取值范围内,运用公式法或通过配方法求出二次函数的最值。☆ 达标检测 ☆ 1、用长为6m的铁丝做成一个边长为xm的矩形,设矩形面积是ym2,,则y与x之间函数关系式为 ,当边长为 时矩形面积最大.2、蓝天汽车出租公司有200辆出租车,市场调查表明:当每辆车的日租金为300元时可全部租出;当每辆车的日租金提高10元时,每天租出的汽车会相应地减少4辆.问每辆出租车的日租金提高多少元,才会使公司一天有最多的收入?
如图所示,要用长20m的铁栏杆,围成一个一面靠墙的长方形花圃,怎么围才能使围成的花圃的面积最大?如果花圃垂直于墙的一边长为xm,花圃的面积为ym2,那么y=x(20-2x).试问:x为何值时,才能使y的值最大?二、合作探究探究点一:二次函数y=ax2+bx+c的最值已知二次函数y=ax2+4x+a-1的最小值为2,则a的值为()A.3 B.-1 C.4 D.4或-1解析:∵二次函数y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故选C.方法总结:求二次函数的最大(小)值有三种方法,第一种是由图象直接得出,第二种是配方法,第三种是公式法.变式训练:见《学练优》本课时练习“课堂达标训练” 第1题探究点二:利用二次函数求图形面积的最大值【类型一】 利用二次函数求矩形面积的最大值
解析:点E是BC︵的中点,根据圆周角定理的推论可得∠BAE=∠CBE,可证得△BDE∽△ABE,然后由相似三角形的对应边成比例得结论.证明:∵点E是BC︵的中点,即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法总结:圆周角定理的推论是和角有关系的定理,所以在圆中,解决相似三角形的问题常常考虑此定理.三、板书设计圆周角和圆心角的关系1.圆周角的概念2.圆周角定理3.圆周角定理的推论本节课的重点是圆周角与圆心角的关系,难点是应用所学知识灵活解题.在本节课的教学中,学生对圆周角的概念和“同弧所对的圆周角相等”这一性质较容易掌握,理解起来问题也不大,而对圆周角与圆心角的关系理解起来则相对困难,因此在教学过程中要着重引导学生对这一知识的探索与理解.还有些学生在应用知识解决问题的过程中往往会忽略同弧的问题,在教学过程中要对此予以足够的强调,借助多媒体加以突出.
环节2:不一样的冬天情境体会由此抛出问题“为什么冬天会发生这样的现象”?因为南北方温差大的原因,环境形成鲜明的对比,让学生体会到伟大祖国的地大物博,从而激发学生的爱国热情。(板书:热爱。音乐伴奏,南北方图片出示欣赏)。相应的动植物、人们的衣着、活动以及心态都是有很大差异。儿歌总结,体现出冬天的奇妙。(板书:奇妙)环节3:冬天里的游戏小组比赛,游戏激趣1.说说“我”在冬天最喜欢玩的游戏是......因为......这一话题可以让学生对冬天产生更强烈的喜爱之情。上周四的第一场大雪让大家期盼已久,学生的第一反应是雪景美,可以打雪仗、堆雪人、打陀螺、滑雪、贴窗花、吃冰糖葫芦等。(板书:美好)2.冬天玩耍需要注意的事项,判断对错。在交流中,教师适时点拨。让学生意识到游戏虽好玩,但要注意方式方法和安全。九、【说板书设计】在板书设计中,我根据学生的特点,采用了简洁的板书形式。首先在导入的教学环节中板书课题,在第二环节以不同地方冬天对比形式板书奇妙、热爱,在第三环节通过玩耍,板书美好。
4. 小结:校园的每一个地方都那么美丽,我们要爱护,而且要安全文明地去使用校园设施,我们才会生活得更开心。教室的每一个地方也是我们都要爱护,图书角、卫生角、生物角等区域都要好好去爱护,因为教室就是我们美丽温馨的家。【设计意图】讨论学生最喜欢的地方目的在于让学生更多地增强对校园环境的喜爱,增强孩子作为小学生的自豪感。以校园不文明想象为例,继续交流,进一步引导学生学会爱护校园环境,安全使用校园设施。使他们明白只有安全、文明、有序地活动,才能让我们获得更多的快乐。(四)活动四:读一读爱护校园拍手歌1.导语:经过刚刚的讨论学习,我们懂得了如何去爱护我们的校园以及教室,也懂得了如何去安全文明使用我们的校园设施。我们要学会去爱护校园。下面,我们一起来诵读爱护校园拍手歌2.任务一:诵读拍手歌爱护校园拍手歌爱护花草,保护绿化文明有序,安全玩耍垃圾分类,不随手丢文明有礼,遵守秩序3.任务二:出示爱护校园环境图片,让学生观察图片说出文明之处。4.小结:诵读拍手歌,看了照片,同学们心中应该都知道了如何爱护我们的校园了。
四、教学过程(一)导入新课1.播放2008年北京奥运会开幕式视频,并让学生说说感受。师:同学们,这就是集体的力量,这是一个由2008个人表演的壮观节目。其实啊,我们的班级也是一个集体,我们每一个人都是这个班集体中的一份子,但是要想做到整齐划一,离不开我们班级的每一个人的努力,这就需要我们服从指挥,听从号令。其实啊,在我们的校园里,也有一个神秘的“指挥家”,这个“指挥家”特别有威力,连老师都要听它的指挥。这么神奇的指挥家,大家猜猜是谁呢?(生预设:喇叭)(二)新授1.师:在我们的校园里有一些专属于我们特有的声音,今天我们这节课就来认识一下《校园里的号令》(板书课题:校园里的号令)2.师:我这里有一段视频,视频里的同学是怎么做的呢?(生预设:我看到大家做得都很好,我们要热爱祖国,尊敬国旗国歌,大家听到国歌都立刻站好,看向国旗。)
这一活动把现实和情景结合起来,让学生真正领悟如何爱护动物,保护大自然,动物是我们的朋友,我们应该和动物互相依存,共同生活在这个世界上,谁也离不开谁。活动三:我是真的喜欢你们1、出示生活中孩子们对待动物的错误方式。让孩子们讨论今后我们应该怎么做。2、对孩子们的回答进行引导,教会孩子们如何去爱护动物。3、抓住典型,使学生明白喜欢动物不是单纯的觉得自己对动物好就是喜欢,而是从动物本身出发,想想动物它们到底需要什么。这三项活动具有连续性,主要是引导学生从生活中明白如何去爱护动物,保护大自然,理解怎样才是真正的喜欢。(三)拓展延伸1、孩子们,动物也有发脾气的时候,如果我们遇到了这样的情况,你们知道如何应对吗?2、出示与动物相处时的注意事项。拓展孩子们的课外知识。五、说板书设计根据一年级学生的年龄特点,我采取直观形象的板书,使学生一目了然地知道学习步骤,引导学生爱护动物,保护大自然。
2、儿歌总结。我们想出了这么多的爱护公物的好办法,王老师把他们都藏在儿歌里了,一起念念吧。爱护公物我能行小朋友,讲文明,爱护公物我能行。不在桌上乱刻画,挪动桌椅要小心。卫生用具要爱惜,开门开窗手脚轻。雪白墙壁不留痕,对待花木有爱心。学校图书我爱护,损坏及时来修补。路遇破坏会制止,劝说他人有耐心。体育器材都爱护,爱护公物我能行!我能行!小结:爱护公物我能行,不单单是一句口号,更要落实在我们的实际行动中3、课后小小约定:(课件出示班级公约)爱护公物需要一份关爱,一份呵护,更需要一份约定。相信我们班的孩子一定能在约定中开出爱护之花,因为我们知道,公物是大家的,需要我们一起爱护她。4、课后整理:学生轻轻整理学习用品,轻轻摆放桌椅,安静有序离开教室。
活动三:用自己的创意和行动为家庭作贡献学生阅读教材第44页,看看图中的创意员为家庭出了哪些“好点子”,再想想自己家是不是也缺少些什么。然后,小组合作出主意,为了让每一个同学家更好,针对缺少的东西,想一些“好点子”。再全班展示交流,教师进行总结评价。板书:自己的创意和行动。设计意图:引导学生在讨论交流的过程中,给家里出一些“好点子”,做一些力所能及的事。环节三:课堂小结,内化提升学生谈一谈学习本节课的收获,教师相机引导。设计意图:梳理总结,体验收获与成功的喜悦,内化提升学生的认识与情感。环节四:布置作业,课外延伸生活中,多为家里做力所能及的事,为家庭做贡献。设计意图:将课堂所学延伸到学生的日常生活中,有利于落实行为实践。
预设 生:我们这组是走上街头,拍下了很多照片 (清洁工辛勤种花、胶水,支援者送温暖、 )4、师:是的,红杜鹃志愿者是韶山的一大特色,他们来自不同的工作岗位,这些普通的人,用最为淳朴的方式,热爱着我们的家乡,美 化着我们的家园。下节课我们将走进他们,了解他们,学习他们。 生继续汇报生:我想起了我们上次在雷锋活动日举行的活动。 5、师:赵老师带来了你们上次活动的照片。你们也是韶山的红杜鹃志愿者,你们可真是文明小市民。6、师:我很欣慰,孩子们,你们真懂事,热爱主席、家乡可不能停 留在口头上,要有实际的行动。7、小结:从你们的语言和行动中我感受到你们对家乡浓浓的爱。让我们的家乡更美丽, 是我们每一个韶山人义不容辞的责任。刚才—— 队最积极,奖励你们一颗星。
学习设计的前三步,体现了深度学习,学生经历了一个“观察——分析——思考——创新——迁移运用”的过程。另外,在设计的过程中,体现了德育课程一体化,既渗透了环保理念,又将学生的课堂活动与学校特色相整合。 第二课时属于实地操作,分为三个环节(一)依据蓝图,小组行动根据上节课商讨结果,以小组为单位进行实地装扮。(二)发现问题,解决问题引导学生在实践操作的过程中及时发现问题,并组内协商解决,增强团队意识。(三)评比选优,交流分享教师带领学生一起参观并进行评价,选出“最优设计团队”。活动结束后,分享活 动感受,体会团结合作的意义。 本课时的三个环节让学生在真实的生活情境中去体验,获得真实感受,这是深度学习的重要方面。在这个过程中,学生能够将道德认知和道德情感落实到行动中去,真正提升了学生的道德行为能力。
设计意图:发现生活中污染、浪费水资源的现象,明白可以靠 法律法规的作用,切实有效地保护水资源。活动三:我们和小水滴 课件出示儿歌《我们和小水滴》,学生先自己诵读,再齐读。 设计意图:学以致用,深入感受水资源的珍贵,自觉珍惜水资源。环节三:感悟明理,育情导行 学生谈一谈学习本节课的收获,教师相机引导。 设计意图:梳理总结,体验收获与成功的喜悦,内化提升学生的认识与情感。环节四:拓展延伸,回归生活 生活中,大家要自觉珍惜水资源。设计意图: 将课堂所学延伸到学生的日常生活中,有利于落实行 为实践。六、板书设计为了突出重点, 让学生整体上感知本节课的主要内容, 我将以思 维导图的形式设计板书: 在黑板中上方的中间位置是课题 《小水滴的 诉说》,下面左边是板画的小水滴, 右边从上到下依次是宝贵, 稀少, 珍惜。
设计意图:引导学生了解祖国的行政区域划分,从中感受国土的辽阔。活动三:祖国的每一寸土地都神圣不可侵犯学生阅读教材第47页的图文资料,结合课前查阅到的有关台湾省的资料,先小组内交流分享台湾省的美丽风光和民风民情,以及民族英雄郑成功收复台湾的故事等,再全班分享,教师相机引导,学生体会到台湾自古以来是我国领土不可分割的一部分,并板书。设计意图:引导学生知道台湾是我国领土不可分割的一部分。环节三:课堂小结,内化提升学生谈一谈学习本节课的收获,教师相机引导。设计意图:梳理总结,体验收获与成功的喜悦,内化提升学生的认识与情感。环节四:布置作业,课外延伸课后,以辽阔的国土为主题写一篇日记。设计意图:将课堂所学延伸到学生的日常生活中,有利于落实行为实践。
学生在二年级的时候,就有了制订自己班级规则的体验,在此基础上,学生阅读教材第10页和第11页的图文资料,看看应当怎样制订班规。接着,学生小组合作,找到合理制订班规的程序、方法,再全班汇报交流,教师相机引导。然后,根据本班的具体情况,由教师带领同学们一起讨论,制订适合自己班级的一些班规。板书:自己班的班规。设计意图:引导学生了解合理制订班规的合理方法,并一起制订自己班的班规。环节三:课堂小结,内化提升学生谈一谈学习本节课的收获,教师相机引导。设计意图:梳理总结,体验收获与成功的喜悦,内化提升学生的认识与情感。环节四:布置作业,课外延伸在今后的学习生活中,要自觉遵守自己制订的班规。设计意图:将课堂所学延伸到学生的日常生活中,有利于落实行为实践。