本节课选自《普通高中课程标准数学教科书-必修一》(人教A版)第三章《函数的概念与性质》,本节课是第2课时,本节课主要学习函数的三种表示方法及其简单应用,进一步加深对函数概念的理解。课本从引进函数概念开始就比较注重函数的不同表示方法:解析法,图象法,列表法.函数的不同表示方法能丰富对函数的认识,帮助理解抽象的函数概念.特别是在信息技术环境下,可以使函数在形与数两方面的结合得到更充分的表现,使学生通过函数的学习更好地体会数形结合这种重要的数学思想方法.因此,在研究函数时,要充分发挥图象的直观作用.课程目标 学科素养A.在实际情景中,会根据不同的需要选择恰当的方法(解析式法、图象法、列表法)表示函数;B.了解简单的分段函数,并能简单地应用;1.数学抽象:函数解析法及能由条件求函数的解析式;2.逻辑推理:求函数的解析式;
课本从引进函数概念开始就比较注重函数的不同表示方法:解析法,图象法,列表法.函数的不同表示方法能丰富对函数的认识,帮助理解抽象的函数概念.特别是在信息技术环境下,可以使函数在形与数两方面的结合得到更充分的表现,使学生通过函数的学习更好地体会数形结合这种重要的数学思想方法.因此,在研究函数时,要充分发挥图象的直观作用.在研究图象时,又要注意代数刻画以求思考和表述的精确性.课本将映射作为函数的一种推广,这与传统的处理方式有了逻辑顺序上的变化.这样处理,主要是想较好地衔接初中的学习,让学生将更多的精力集中理解函数的概念,同时,也体现了从特殊到一般的思维过程.课程目标1、明确函数的三种表示方法;2、在实际情境中,会根据不同的需要选择恰当的方法表示函数;3、通过具体实例,了解简单的分段函数,并能简单应用.
客观世界中的各种各样的运动变化现象均可表现为变量间的对应关系,这种关系常常可用函数模型来描述,并且通过研究函数模型就可以把我相应的运动变化规律.课程目标1、能够找出简单实际问题中的函数关系式,初步体会应用一次函数、二次函数、幂函数、分段函数模型解决实际问题; 2、感受运用函数概念建立模型的过程和方法,体会一次函数、二次函数、幂函数、分段函数模型在数学和其他学科中的重要性. 数学学科素养1.数学抽象:总结函数模型; 2.逻辑推理:找出简单实际问题中的函数关系式,根据题干信息写出分段函数; 3.数学运算:结合函数图象或其单调性来求最值. ; 4.数据分析:二次函数通过对称轴和定义域区间求最优问题; 5.数学建模:在具体问题情境中,运用数形结合思想,将自然语言用数学表达式表示出来。 重点:运用一次函数、二次函数、幂函数、分段函数模型的处理实际问题;难点:运用函数思想理解和处理现实生活和社会中的简单问题.
本节课选自《普通高中课程标准实验教科书数学必修1本(A版)》的第五章的4.5.3函数模型的应用。函数模型及其应用是中学重要内容之一,又是数学与生活实践相互衔接的枢纽,特别在应用意识日益加深的今天,函数模型的应用实质是揭示了客观世界中量的相互依存有互有制约的关系,因而函数模型的应用举例有着不可替代的重要位置,又有重要的现实意义。本节课要求学生利用给定的函数模型或建立函数模型解决实际问题,并对给定的函数模型进行简单的分析评价,发展学生数学建模、数学直观、数学抽象、逻辑推理的核心素养。1. 能建立函数模型解决实际问题.2.了解拟合函数模型并解决实际问题.3.通过本节内容的学习,使学生认识函数模型的作用,提高学生数学建模,数据分析的能力. a.数学抽象:由实际问题建立函数模型;b.逻辑推理:选择合适的函数模型;c.数学运算:运用函数模型解决实际问题;
四、小结1.知识:如何采用两角和或差的正余弦公式进行合角,借助三角函数的相关性质求值.其中三角函数最值问题是对三角函数的概念、图像和性质,以及诱导公式、同角三角函数基本关系、和(差)角公式的综合应用,也是函数思想的具体体现. 如何科学的把实际问题转化成数学问题,如何选择自变量建立数学关系式;求解三角函数在某一区间的最值问题.2.思想:本节课通过由特殊到一般方式把关系式 化成 的形式,可以很好地培养学生探究、归纳、类比的能力. 通过探究如何选择自变量建立数学关系式,可以很好地培养学生分析问题、解决问题的能力和应用意识,进一步培养学生的建模意识.五、作业1. 课时练 2. 预习下节课内容学生根据课堂学习,自主总结知识要点,及运用的思想方法。注意总结自己在学习中的易错点;
它位于三角函数与数学变换的结合点上,能较好反应三角函数及变换之间的内在联系和相互转换,本节课内容的地位体现在它的基础性上。作用体现在它的工具性上。前面学生已经掌握了两角和与差的正弦、余弦、正切公式以及二倍角公式,并能通过这些公式进行求值、化简、证明,虽然学生已经具备了一定的推理、运算能力,但在数学的应用意识与应用能力方面尚需进一步培养.课程目标1.能用二倍角公式推导出半角公式,体会三角恒等变换的基本思想方法,以及进行简单的应用. 2.了解三角恒等变换的特点、变换技巧,掌握三角恒等变换的基本思想方法. 3.能利用三角恒等变换的技巧进行三角函数式的化简、求值以及证明,进而进行简单的应用. 数学学科素养1.逻辑推理: 三角恒等式的证明; 2.数据分析:三角函数式的化简; 3.数学运算:三角函数式的求值.
9.例二:如图,AB∩α=B,A?α, ?a.直线AB与a具有怎样的位置关系?为什么?解:直线AB与a是异面直线。理由如下:若直线AB与a不是异面直线,则它们相交或平行,设它们确定的平面为β,则B∈β, 由于经过点B与直线a有且仅有一个平面α,因此平面平面α与β重合,从而 , 进而A∈α,这与A?α矛盾。所以直线AB与a是异面直线。补充说明:例二告诉我们一种判断异面直线的方法:与一个平面相交的直线和这个平面内不经过交点的直线是异面直线。10. 例3 已知a,b,c是三条直线,如果a与b是异面直线,b与c是异面直线,那么a与c有怎样的位置关系?并画图说明.解: 直线a与直线c的位置关系可以是平行、相交、异面.如图(1)(2)(3).总结:判定两条直线是异面直线的方法(1)定义法:由定义判断两条直线不可能在同一平面内.
由于三角函数是刻画周期变化现象的数学模型,这也是三角函数不同于其他类型函数的最重要的地方,而且对于周期函数,我们只要认识清楚它在一个周期的区间上的性质,那么它的性质也就完全清楚了,因此本节课利用单位圆中的三角函数的定义、三角函数值之间的内在联系性等来作图,从画出的图形中观察得出五个关键点,得到“五点法”画正弦函数、余弦函数的简图.课程目标1.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.2.理解正弦曲线与余弦曲线之间的联系. 数学学科素养1.数学抽象:正弦曲线与余弦曲线的概念; 2.逻辑推理:正弦曲线与余弦曲线的联系; 3.直观想象:正弦函数余弦函数的图像; 4.数学运算:五点作图; 5.数学建模:通过正弦、余弦图象图像,解决不等式问题及零点问题,这正是数形结合思想方法的应用.
指数函数与幂函数是相通的,本节在已经学习幂函数的基础上通过实例总结归纳指数函数的概念,通过函数的三个特征解决一些与函数概念有关的问题.课程目标1、通过实际问题了解指数函数的实际背景;2、理解指数函数的概念和意义.数学学科素养1.数学抽象:指数函数的概念;2.逻辑推理:用待定系数法求函数解析式及解析值;3.数学运算:利用指数函数的概念求参数;4.数学建模:通过由抽象到具体,由具体到一般的思想总结指数函数概念.重点:理解指数函数的概念和意义;难点:理解指数函数的概念.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入在本章的开头,问题(1)中时间 与GDP值中的 ,请问这两个函数有什么共同特征.要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.
问题导入:问题一:试验1:分别抛掷两枚质地均匀的硬币,A=“第一枚硬币正面朝上”,B=“第二枚硬币正面朝上”。事件A的发生是否影响事件B的概率?因为两枚硬币分别抛掷,第一枚硬币的抛掷结果与第二枚硬币的抛掷结果互相不受影响,所以事件A发生与否不影响事件B发生的概率。问题二:计算试验1中的P(A),P(B),P(AB),你有什么发现?在该试验中,用1表示硬币“正面朝上”,用0表示“反面朝上”,则样本空间Ω={(1,1),(1,0),(0,1),(0,0)},包含4个等可能的样本点。而A={(1,1),(1,0)},B={(1,0),(0,0)}所以AB={(1,0)}由古典概率模型概率计算公式,得P(A)=P(B)=0.5,P(AB)=0.25, 于是 P(AB)=P(A)P(B)积事件AB的概率恰好等于事件A、B概率的乘积。问题三:试验2:一个袋子中装有标号分别是1,2,3,4的4个球,除标号外没有其他差异。
1.圆柱、圆锥、圆台的表面积与多面体的表面积一样,圆柱、圆锥、圆台的表面积也是围成它的各个面的面积和。利用圆柱、圆锥、圆台的展开图如图,可以得到它们的表面积公式:2.思考1:圆柱、圆锥、圆台的表面积之间有什么关系?你能用圆柱、圆锥、圆台的结构特征来解释这种关系吗?3.练习一圆柱的一个底面积是S,侧面展开图是一个正方体,那么这个圆柱的侧面积是( )A 4πS B 2πS C πS D 4.练习二:如图所示,在边长为4的正三角形ABC中,E,F分别是AB,AC的中点,D为BC的中点,H,G分别是BD,CD的中点,若将正三角形ABC绕AD旋转180°,求阴影部分形成的几何体的表面积.5. 圆柱、圆锥、圆台的体积对于柱体、锥体、台体的体积公式的认识(1)等底、等高的两个柱体的体积相同.(2)等底、等高的圆锥和圆柱的体积之间的关系可以通过实验得出,等底、等高的圆柱的体积是圆锥的体积的3倍.
新知探究:向量的减法运算定义问题四:你能根据实数的减法运算定义向量的减法运算吗?由两个向量和的定义已知 即任意向量与其相反向量的和是零向量。求两个向量差的运算叫做向量的减法。我们看到,向量的减法可以转化为向量的加法来进行:减去一个向量相当于加上这个向量的相反向量。即新知探究(二):向量减法的作图方法知识探究(三):向量减法的几何意义问题六:根据问题五,思考一下向量减法的几何意义是什么?问题七:非零共线向量怎样做减法运算? 问题八:非零共线向量怎样做减法运算?1.共线同向2.共线反向小试牛刀判一判(正确的打“√”,错误的打“×”)(1)两个向量的差仍是一个向量。 (√ )(2)向量的减法实质上是向量的加法的逆运算. ( √ )(3)向量a与向量b的差与向量b与向量a的差互为相反向量。 ( √ )(4)相反向量是共线向量。 ( √ )
一、情境导学我国著名数学家吴文俊先生在《数学教育现代化问题》中指出:“数学研究数量关系与空间形式,简单讲就是形与数,欧几里得几何体系的特点是排除了数量关系,对于研究空间形式,你要真正的‘腾飞’,不通过数量关系,我想不出有什么好的办法…….”吴文俊先生明确地指出中学几何的“腾飞”是“数量化”,也就是坐标系的引入,使得几何问题“代数化”,为了使得空间几何“代数化”,我们引入了坐标及其运算.二、探究新知一、空间直角坐标系与坐标表示1.空间直角坐标系在空间选定一点O和一个单位正交基底{i,j,k},以点O为原点,分别以i,j,k的方向为正方向、以它们的长为单位长度建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴.这时我们就建立了一个空间直角坐标系Oxyz,O叫做原点,i,j,k都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为Oxy平面,Oyz平面,Ozx平面.
遵守道路交通法规,保障你我生命安全!各位老师、各位同学:早上好!昨天是12月2日,1994年开通并投入使用的122是我国道路交通事故报警电话。近日公安部报请国务院批准,将每年的12月2日确定为“全国交通安全日”。 今年“全国交通安全日”的主题是“遵守交通信号,安全文明出行”!借此机会,我想和大家谈的是“遵守道路交通法规,保障你我安全!”近年来,机动车增多,汽车进入家庭,给人们生产生活带来便利的同时,也带来了交通拥挤和交通事故增多的严峻问题。道路通车里程和机动车、驾驶人数量及交通流量的持续大幅度增长,道路交通面临的压力越来越大,人、车、路的矛盾越来越突出。据统计,截至20**年10月,我国机动车保有量为亿辆、机动车驾驶人亿人,近五年来每年平均新增机动车1600多万辆,新增驾驶人XX多万人。而由于不遵守交通信号行为的大量存在,更加剧影响了道路通行秩序和通行效率,酿成了为数惊人的的交通事故。我国的道路交通事故尽管实现了稳中有降,但总量仍然骇人听闻:仅今年8月份一个月,全国公安交通管理部门共受理道路交通事故达43151起,仅此一月的交通事故就造成9601人死亡、45860人受伤,直接财产损失亿元。
遵守道路交通法规,保障你我生命安全!各位老师、各位同学:早上好!昨天是12月2日,1994年开通并投入使用的122是我国道路交通事故报警电话。近日公安部报请国务院批准,将每年的12月2日确定为“全国交通安全日”。 今年“全国交通安全日”的主题是“遵守交通信号,安全文明出行”!借此机会,我想和大家谈的是“遵守道路交通法规,保障你我安全!”近年来,机动车增多,汽车进入家庭,给人们生产生活带来便利的同时,也带来了交通拥挤和交通事故增多的严峻问题。道路通车里程和机动车、驾驶人数量及交通流量的持续大幅度增长,道路交通面临的压力越来越大,人、车、路的矛盾越来越突出。据统计,截至20**年10月,我国机动车保有量为亿辆、机动车驾驶人亿人,近五年来每年平均新增机动车1600多万辆,新增驾驶人XX多万人。而由于不遵守交通信号行为的大量存在,更加剧影响了道路通行秩序和通行效率,酿成了为数惊人的的交通事故。
同学们,老师们:大家好!每年的3月23日是"世界气象日"。今年世界气象日的主题是:“人与气候”。众所周知,地球是一个自然灾害频繁的星球,而天气、气候灾害占到自然灾害的70%以上。据有关资料显示,全球发生的重大气象灾害比半个世纪前多了倍,每年平均.亿人受其危害,是受战争冲突影响人数的七倍。与气象条件有关的水土流失、泥石流、滑坡、崩塌、地面沉降、森林和草原火灾、农林草原病虫害等生态环境灾害,更是带给人们一次又一次的痛苦。在严重的天气、气候灾害面前,人类社会显得极其脆弱;狂风刮倒房屋;暴雨引起的洪涝淹没农田;长期干旱导致庄稼干枯、生畜渴死;高温酷热和低温严寒造成病人增加、死亡率增高;雷电致人死伤和引起火灾。就说刚刚过去的冬天,发生在我国南方的雪灾是百年不遇的。尽管全球气候还存在许多不确定性,但气候使地球环境和人类社会变得更加脆弱,并严重影响世界经济和社会的可持续发展是显而易见的。
各位老师、同学们:大家上午好!我今天国旗下讲话的主题是《践行绿色生活》。今天是六月一日,是大家都很熟悉的儿童节,再过几天的六月五日也是一个很有意义的节日——世界环境日,今年是第45个世界环境日,中国的主题是“践行绿色生活”。今年6月5日也是新环保法实施后的首个“环境日”。“践行绿色生活”这个主题旨在增强全民环境意识、节约意识、生态意识,选择低碳、节俭的绿色生活方式和消费模式,形成人人、事事、时时崇尚生态文明的社会新风尚。自然环境是我们人类生存的基础,保护和改善自然环境,是人类维护自身生存和发展的前提。那么,同学们应该怎样保护环境呢?保护环境,推动生活方式绿色化,需要大家自觉从衣、食、住、行各方面做出绿色选择,应该从身边小事做起。而你们一直在实践着!建阳一中历年来始终坚持把学校教育与环境教育紧密结合起来,努力用“绿色”教育理念培育学生、引导学生,通过课内教学和课外社会实践活动相结合的办法,切实使学生掌握有关环境保护的生活知识,扩大学生的视野,培养了学生关爱社会、关爱地球、关爱他人的美好情操,受到社会各界的肯定和广泛赞誉。
(四)研究指标体系。拟会同有关zy企业、第三方机构等,从经济、战略、社会等三个价值维度,突出重点领域、关键环节、核心要素,科学合理选取共性指标,结合行业特征选取个性指标,构建zy企业价值创造评价指标体系,并组织开展试评价,不断优化调整。(五)选树标杆典型。深入挖掘价值创造行动中的经验做法、成功实践,总结提炼先进典型,适时启动价值创造行动“十佳百优”标杆创建活动,在不同行业、不同层级、不同类型推出一批模范企业,充分发挥典型引领作用,实现以点带面、全面提升。(六)做好宣传推广。开展价值创造行动系列专题培训,邀请优秀企业、知名专家等就价值创造开展培训交流。会同宣传局、新闻中心,通过国资委官网、国资小新、国企改革公众号和主流新闻媒体进行宣传,营造良好氛围。同时,积极指导地方国资委抓好组织实施,形成协同联动、齐抓共建的工作格局。
为让我县居民群众积极参与环境保护的氛围,**市生态环境局**县分局按照市局文件要求开展了形式多样的宣传教育活动,引导了我县群众居民对环境保护的关心、重视与参与。宣传教育活动取得了良好的社会效果,现将活动情况总结如下:认真组织、精心安排。世界环境日期间是开展环境宣传教育、提高全员环境意识的有利时机,我分局领导班子高度重视本次宣传活动,并成立了宣传专班。今年的“6.5”宣传活动是由主要领导亲自抓,亲自督导,分管领导具体负责,提前进行了统筹安排,精心策划,组织宣传专班具体实施。主要活动情况。6月4日18时,我分局在一河两岸景观桥广场举行了“建设人与自然和谐共生的现代化”六五世界环境日宣传活动。活动分为三个部分内容,一是邀请“县油梓树文艺志愿服务队”表演文艺汇演。二是对现场居民群众普及生态环境知识,号召社会公众了解环保、支持环保、参与环保。
等式性质与不等式性质是高中数学的主要内容之一,在高中数学中占有重要地位,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应,有着重要的实际意义.同时等式性质与不等式性质也为学生以后顺利学习基本不等式起到重要的铺垫.课程目标1. 掌握等式性质与不等式性质以及推论,能够运用其解决简单的问题.2. 进一步掌握作差、作商、综合法等比较法比较实数的大小. 3. 通过教学培养学生合作交流的意识和大胆猜测、乐于探究的良好思维品质。数学学科素养1.数学抽象:不等式的基本性质;2.逻辑推理:不等式的证明;3.数学运算:比较多项式的大小及重要不等式的应用;4.数据分析:多项式的取值范围,许将单项式的范围之一求出,然后相加或相乘.(将减法转化为加法,将除法转化为乘法);5.数学建模:运用类比的思想有等式的基本性质猜测不等式的基本性质。