方程有两个不相等的实数根.综上所述,m=3.易错提醒:本题由根与系数的关系求出字母m的值,但一定要代入判别式验算,字母m的取值必须使判别式大于0,这一点很容易被忽略.三、板书设计一元二次方程的根与系数的关系关系:如果方程ax2+bx+c=0(a≠0) 有两个实数根x1,x2,那么x1+x2 =-ba,x1x2=ca应用利用根与系数的关系求代数式的值已知方程一根,利用根与系数的关系求方程的另一根判别式及根与系数的关系的综合应用让学生经历探索,尝试发现韦达定理,感受不完全的归纳验证以及演绎证明.通过观察、实践、讨论等活动,经历发现问题、发现关系的过程,养成独立思考的习惯,培养学生观察、分析和综合判断的能力,激发学生发现规律的积极性,激励学生勇于探索的精神.通过交流互动,逐步养成合作的意识及严谨的治学精神.
∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根据勾股定理的逆定理可知△ABC为直角三角形.方法总结:根据一元二次方程根的情况,利用判别式得到关于一元二次方程系数的等式或不等式,再结合其他条件解题.三、板书设计用公式法解一元二次方程求根公式:x=-b±b2-4ac2a(a≠0,b2-4ac≥0)用公式法解一元二次 方程的一般步骤①化为一般形式②确定a,b,c的值③求出b2-4ac④利用求根公式求解一元二次方程根的判别式经历从用配方法解数字系数的一元二次方程到解字母系数的一元二次方程,探索求根公式,发展学生合情合理的推理能力,并认识到配方法是理解求根公式的基础.通过对求根公式的推导,认识到一元二次方程的求根公式适用于所有的一元二次方程,操作简单.体会数式通性,感受数学的严谨性和数学结论的确定性.提高学生的运算能力,并养成良好的运算习惯.
首先列表,利用未知数的取值,根据一元二次方程的一般形式ax2+bx+c=0(a,b,c为常数,a≠0)分别计算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知数的大致取值范围,然后再进一步在这个范围内取值,逐步缩小范围,直到所要求的精确度为止.(2)在估计一元二次方程根的取值范围时,当ax2+bx+c(a≠0)的值由正变负或由负变正时,x的取值范围很重要,因为只有在这个范围内,才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板书设计一元二次方程的解的估算,采用“夹逼法”:(1)先根据实际问题确定其解的大致范围;(2)再通过列表,具体计算,进行两边“夹逼”,逐步获得其近似解.“估算”在求解实际生活中一些较为复杂的方程时应用广泛.在本节课中让学生体会用“夹逼”的思想解决一元二次方程的解或近似解的方法.教学设计上,强调自主学习,注重合作交流,在探究过程中获得数学活动的经验,提高探究、发现和创新的能力.
3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;
二、填空题1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,条件是________.2.当x=______时,代数式x2-8x+12的值是-4.3.若关于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根为0,则m的值是_____.三、综合提高题1.用公式法解关于x的方程:x2-2ax-b2+a2=0.2.设x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,(1)试推导x1+x2=- ,x1·x2= ;(2)求代数式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.3.某电厂规定:该厂家属区的每户居民一个月用电量不超过A千瓦时,那么这户居民这个月只交10元电费,如果超过A千瓦时,那么这个月除了交10元用电费外超过部分还要按每千瓦时 元收费.(1)若某户2月份用电90千瓦时,超过规定A千瓦时,则超过部分电费为多少元?(用A表示)(2)下表是这户居民3月、4月的用电情况和交费情况
三:巩固新知1、判断对错:(1)如果一个菱形的两条对角线相等,那么它一定是正方形. ( )(2)如果一个矩形的两条对角线互相垂直,那么它一定是正方形.( )(3)两条对角线互相垂直平分且相等的四边形,一定是正方形. ( )(4)四条边相等,且有一个角是直角的四边形是正方形. ( )2、已知:点E、F、G、H分别是正方形ABCD四条边上的中点,并且E、F、G、H分别是AB、BC、CD、AD的中点.求证:四边形EFGH是正方形.3、自己完成课本P23的议一议四、小结1.正方形的判定方法.2.了解正方形、矩形、菱形之间的联系与区别,体验事物之间是相互联系但又有区别的辩证唯物主义观点.3.本节的收获与疑惑.
二、填空题1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,条件是________.2.当x=______时,代数式x2-8x+12的值是-4.3.若关于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根为0,则m的值是_____.三、综合提高题1.用公式法解关于x的方程:x2-2ax-b2+a2=0.2.设x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,(1)试推导x1+x2=- ,x1·x2= ;(2)求代数式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.3.某电厂规定:该厂家属区的每户居民一个月用电量不超过A千瓦时,那么这户居民这个月只交10元电费,如果超过A千瓦时,那么这个月除了交10元用电费外超过部分还要按每千瓦时 元收费.(1)若某户2月份用电90千瓦时,超过规定A千瓦时,则超过部分电费为多少元?(用A表示)(2)下表是这户居民3月、4月的用电情况和交费情况
∴OE=OF=OG=OH.又∵EG⊥FH,∴四边形EFGH为菱形.∵EO+GO=FO+HO,即EG=HF,∴四边形EFGH为正方形.方法总结:对角线互相垂直平分且相等的四边形是正方形.探究点二:正方形、菱形、矩形与平行四边形之间的关系填空:(1)对角线________________的四边形是矩形;(2)对角线____________的平行四边形是矩形;(3)对角线__________的平行四边形是正方形;(4)对角线________________的矩形是正方形;(5)对角线________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法总结:从对角线上分析特殊四边形之间的关系应充分考虑特殊四边形的性质与判别,防止混淆.菱形、矩形、正方形都是平行四边形,且是特殊的平行四边形,特殊之处在于:矩形是有一个角为直角的平行四边形;菱形是有一组邻边相等的平行四边形;而正方形是兼具两者特性的更特殊的平行四边形,它既是矩形,又是菱形.
1)正方形的边长为4cm,则周长为( ),面积为( ) ,对角线长为( );2))正方形ABCD中,对角线AC、BD交于O点,AC=4 cm,则正方形的边长为( ), 周长为( ),面积为( )3)在正方形ABCD中,AB=12 cm,对角线AC、BD相交于O,OA= ,AC= 。4) 1、正方形具有而矩形不一定具有的性质是( ) A、四个角相等 B、对角线互相垂直平分 C、对角互补 D、对角线相等. 5)、正方形具有而菱形不一定具有的性质( ) A、四条边相等 B对角线互相垂直平分 C对角线平分一组对角 D对角线相等. 6)、正方形对角线长6,则它的面积为_________ ,周长为________. 7)、顺次连接正方形各边中点的小正方形的面积是原正方形面积的( )A.1/2 B.1/3 C.1/4 D.1/ 5四:范例讲解:1、(课本P21例1)学生自己阅读课本内容、注意证明过程的书写2、 如图,分别以△ABC的边AB,AC为一边向外画正方形AEDB和正方形ACFG,连接CE,BG.求证:BG=CE
易错提醒:利用b2-4ac判断一元二次方程根的情况时,容易忽略二次项系数不能等于0这一条件,本题中容易误选A.【类型三】 根的判别式与三角形的综合应用已知a,b,c分别是△ABC的三边长,当m>0时,关于x的一元二次方程c(x2+m)+b(x2-m)-2m ax=0有两个相等的实数根,请判断△ABC的形状.解析:先将方程转化为一般形式,再根据根的判别式确定a,b,c之间的关系,即可判定△ABC的形状.解:将原方程转化为一般形式,得(b+c)x2-2m ax+(c-b)m=0.∵原方程有两个相等的实数根,∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根据勾股定理的逆定理可知△ABC为直角三角形.方法总结:根据一元二次方程根的情况,利用判别式得到关于一元二次方程系数的等式或不等式,再结合其他条件解题.
2、猜想 一元二次方程的两个根 的和与积和原来的方程有什么联系?小组交流。3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;
解:(1)设第一次落地时,抛物线的表达式为y=a(x-6)2+4,由已知:当x=0时,y=1,即1=36a+4,所以a=-112.所以函数表达式为y=-112(x-6)2+4或y=-112x2+x+1;(2)令y=0,则-112(x-6)2+4=0,所以(x-6)2=48,所以x1=43+6≈13,x2=-43+6<0(舍去).所以足球第一次落地距守门员约13米;(3)如图,第二次足球弹出后的距离为CD,根据题意:CD=EF(即相当于将抛物线AEMFC向下平移了2个单位).所以2=-112(x-6)2+4,解得x1=6-26,x2=6+26,所以CD=|x1-x2|=46≈10.所以BD=13-6+10=17(米).方法总结:解决此类问题的关键是先进行数学建模,将实际问题中的条件转化为数学问题中的条件.常有两个步骤:(1)根据题意得出二次函数的关系式,将实际问题转化为纯数学问题;(2)应用有关函数的性质作答.
一、课堂教学提质量 课堂是学生学习的主阵地,学生知识的接受、方法的提炼、语言的淬炼、思维的碰撞以及价值观的养成,皆在40分钟的课堂中得以发生并收获。可以说,课堂的效率决定了学生学习的质量、作业的质量与速度以及思维的提升。所以,我认为,作为教师,首先要扎扎实实、尽心尽力的备好每一堂课,课前充分了解学生因材施教,课堂上充分的尊重学生,给予并鼓励学生有表达与思辨的机会,不做“填鸭式”的教学,做到“以点带面”、精讲精练,重方法的引导与提炼,轻知识的传授与说教
一、课堂教学提质量 课堂是学生学习的主阵地,学生知识的接受、方法的提炼、语言的淬炼、思维的碰撞以及价值观的养成,皆在40分钟的课堂中得以发生并收获。可以说,课堂的效率决定了学生学习的质量、作业的质量与速度以及思维的提升。所以,我认为,作为教师,首先要扎扎实实、尽心尽力的备好每一堂课,课前充分了解学生因材施教,课堂上充分的尊重学生,给予并鼓励学生有表达与思辨的机会,不做“填鸭式”的教学,做到“以点带面”、精讲精练,重方法的引导与提炼,轻知识的传授与说教
减轻义务教育阶段学生作业负担和校外培训负担,根据国家政策构建教育的良好生态,把教育归还学校,在此基础上进行的减少促进学生的健康成长减少家长的焦虑情绪,以学生文本,减轻学生的作业负担,进行优质的作业练习,在有限的时间内达到高效的学习,同时开展多样的课程丰富学生的学习,扩宽学生的思维和视野。充分利用身边的社会资源和自身的资源,同时国家也在第一时间更新了线上的免费资源,这在无形中也是给与了极大的帮助,同时对校外的机构也进行严格的审查,扎实的做好每一点,看到有关的政策,我们会发现在双减的过程中去掉了很多不必要的工作或者史不必要的负担,把优质的留下来,把劣质的减下去,这也在无形的减轻着家长的负担。同时在学校方面不允许给家长布置作业,作业的减少和作业基本在校完成,同时更针对学生的个体差异去进行。
(一)智慧环卫提升管理水平 开发“机械化作业车辆管理系统”,实现了对作业车辆的全程定位和科学调度,并对设备状态、作业质量及油料进行实时监控,解决了机械化作业“丢段”、 油料偷盗等老大难问题,降低了机械化设备的单位能耗。研发环卫巡查督查管理系统,强化队伍管理。通过安装手机APP,局、所两级路面管理人员只需登录系统,就能完成远程签到、签退,杜绝了“空岗”现象。下一步还将开发“垃圾运输管理系统”,实现对垃圾站点入站垃圾、满斗等情况的实时监控,提高垃圾运输质量和水平。
3、公司鼓励员工积极参与公司的决策和管理,鼓励员工发挥才智,提出合理化 建议。4、公司推行岗位责任制,实行考勤、考核制度,评先树优,对做出贡献者予以 奖励。5、公司内不得公开或私底下恶性漫骂、批评、散播不实谣言及挑拨是非,破坏 员工彼此团结与和谐。勿于同事或客户面前谈论他人之不是,亦不得在同事 同仁、客户面前指责他人,主管、客户及公司间任何之不是,一经查实,定 严惩重罚之。
第二条 公司名称:第三条 公司住所:第四条 公司由 共同投资组建。第五条 公司依法在**工商行政管理局登记注册,取得法人资格,公司经营期限为 年。第六条 公司为有限责任公司,实行独立核算,自主经营,自负盈亏。股东以其出资额为限对公司承担责任,公司以其全部资产对公司的债务承担责任。
活动过程1、猜谜语引出这节课的内容。谁?师:今天我们要认识一个新朋友,请小朋友猜猜他是谁,滴答滴答,会走没有腿,会说没有嘴,他会告诉我们,什么时候起,什么时候睡,大家猜猜他是谁?引导幼儿学说:“钟表”2、师:刚才的谜底是“钟表”,请幼儿说说钟表的用途,总结出钟能告诉我们时间,人们的学习、生活、工作都离不开它。今天老师就给小朋友们带来了一位钟表朋友。(出示制作的钟表)3、引导幼儿观察钟表的表面。请小朋友仔细观察钟表,钟表上都有什么呢?有数字宝宝,有针,请小朋友从小到大的顺序读一读。1-123.。老师拨动钟表调时钮,引导幼儿观察时针和分针的区别。幼儿学说:“分针”“时针”“分针跑得快,时针跑得慢。”
一、依标扣本,说教材《我们爱整洁》是本单元的第三课。教材以“整理”为抓手,旨在培养学生具有良好的日常生活习惯和生活能力,培养自己的事自己做的主人翁意识和责任感,本课所显现的劳动带给生活的改变和美好。本课教学内容共有四个话题,小雨和他的“小伙伴”、找不到“小伙伴”了、送“小伙伴”回家、养成整理好习惯。第一课时主要是完成前两个话题。二、以人为本,说学情一年级学生年龄偏小,而且父母大多在外务工,爷爷奶奶年龄大,或者本身也不是很注重孩子的整洁培养,所以很邋遢。并不明白整洁是文明生活方式的外在表现。整洁反映的是人的精神面貌和生活态度,只有当学生懂得了整洁会给人带来精神的愉悦,使自己更好地融入社会生活,学生才会主动地整理自己的仪容、仪表,注意自己的卫生。老师需要通过正面以及不断地通过各种活动,结合书本一步步引导学生真正理解整洁,养成整洁好习惯,积极乐观的面对生活。因此基于课标与教材的解读以及学情分析,我制定以下教学目标:教学目标1充分认识到整洁、卫生是自尊的第一步,认识到整洁的真正含义,并愿意自动的保持整洁,做一个讲卫生的好学生。2懂得整洁与人的精神面貌和生活态度有关系,还会影响朋友交往等活动,做一个健康,会打理自己的好学生。