1、 如图4-25,将一个圆分成三个大小相同的扇形,你能算出它们的圆心角的度数吗?你知道每个扇形的面积和整个圆的面积的关系吗?与同伴进行交流2、 画一个半径是2cm的圆,并在其中画一个圆心为60º的扇形,你会计算这个扇形的面积吗?与同伴交流。教师对答案进行汇总,讲解本题解题思路:1、 因为一个圆被分成了大小相同的扇形,所以每个扇形的圆心角相同,又因为圆周角是360º,所以每个扇形的圆心角是360º÷3=120º,每个扇形的面积为整个圆的面积的三分之一。2、 先求出这个圆的面积S=πR²=4π,60÷360=1/6扇形面积=4π×1/6=2π/3【设计意图】运用小组合作交流的方式,既培养了学生的合作意识和能力,又达到了互帮互助以弱带强的目的,使学习比较吃力的同学也能参与到学习中来,体现了学生是学习的主体。
方法总结:在分辨一个图形是否为多边形时,一定要抓住多边形定义中的关键词语,如“线段”“首尾顺次连接”“封闭”“平面图形”等.如此,对于某些似是而非的图形,只要根据定义进行对照和分析,即可判定.探究点二:确定多边形的对角线一个多边形从一个顶点最多能引出2015条对角线,这个多边形的边数是()A.2015 B.2016 C.2017 D.2018解析:这个多边形的边数为2015+3=2018.故选D.方法总结:过n边形的一个顶点可以画出(n-3)条对角线.本题只要逆向求解即可.探究点三:求扇形圆心角将一个圆分割成三个扇形,它们的圆心角的度数之比为2:3:4,求这三个扇形圆心角的度数.解析:用扇形圆心角所对应的比去乘360°即可求出相应扇形圆心角的度数.解:三个扇形的圆心角度数分别为:360°×22+3+4=80°;360°×32+3+4=120°;
解:∵CE⊥AF,∴∠DEF=90°,∴∠EDF=90°-∠F=90°-40°=50°.由三角形的内角和定理得∠C+∠DBC+∠CDB=∠F+∠DEF+∠EDF,又∵∠CDB=∠EDF,∴30°+∠DBC=40°+90°,∴∠DBC=100°.方法总结:本题主要利用了“直角三角形两锐角互余”的性质和三角形的内角和定理,熟记性质并准确识图是解题的关键.三、板书设计1.三角形的内角和定理:三角形的内角和等于180°.2.三角形内角和定理的证明3.直角三角形的性质:直角三角形两锐角互余.本节课通过一段对话设置疑问,巧设悬念,激发起学生获取知识的求知欲,充分调动学生学习的积极性,使学生由被动接受知识转为主动学习,从而提高学习效率.然后让学生自主探究,在教学过程中充分发挥学生的主动性,让学生提出猜想.在教学中,教师通过必要的提示指明学生思考问题的方向,在学生提出验证三角形内角和的不同方法时,教师注意让学生上台演示自己的操作过程和说明自己的想法,这样有助于学生接受三角形的内角和是180°这一结论
探究点三:正比例函数的性质已知正比例函数y=-kx的图象经过一、三象限,P1(x1,y1)、P2(x2,y2)、P3(x3,y3)三点在函数y=(k-2)x的图象上,且x1>x3>x2,则y1,y2,y3的大小关系为()A.y1>y3>y2 B.y1>y2>y3C.y1y2>y1解析:由y=-kx的图象经过一、三象限,可知-k>0即kx3>x2得y10时,y随x的增大而增大;k<0时,y随x的增大而减小.三、板书设计1.函数与图象之间是一一对应的关系;2.作一个函数的图象的一般步骤:列表,描点,连线;3.正比例函数的图象的性质:正比例函数的图象是一条经过原点的直线.经历函数图象的作图过程,初步了解作函数图象的一般步骤:列表、描点、连线.已知函数的表达式作函数的图象,培养学生数形结合的意识和能力.理解一次函数的表达式与图象之间的一一对应关系.
四、教学设计反思这节内容是学生利用数形结合的思想去研究正比例函数的图象,对函数与图象的对应关系有点陌生.在教学过程中教师应通过情境创设激发学生的学习兴趣,对函数与图象的对应关系应让学生动手去实践,去发现,对正比例函数的图象是一条直线应让学生自己得出.在得出结论之后,让学生能运用“两点确定一条直线”,很快作出正比例函数的图象.在巩固练习活动中,鼓励学生积极思考,提高学生解决实际问题的能力.当然,根据学生状况,教学设计也应做出相应的调整。如第一环节:创设情境 引入课题,固然可以激发学生兴趣,但也可能容易让学生关注代数表达式的寻求,甚至对部分学生形成一定的认知障碍,因此该环节也可以直接开门见山,直入主题,如提出问题:正比例函数的代数形式是y=kx,那么,一个正比例函数对应的图形具有什么特征呢?
(3)∵AD=4,DE=1,∴AE=42+12=17.∵对应点到旋转中心的距离相等且F是E的对应点,∴AF=AE=17.(4)∵∠EAF=90°(旋转角相等)且AF=AE,∴△EAF是等腰直角三角形.【类型二】 旋转的性质的运用如图,点E是正方形ABCD内一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3则∠BE′C=________度.解析:连接EE′,由旋转性质知BE=BE′,∠EBE′=90°,∴△BEE′为等腰直角三角形且∠EE′B=45°,EE′=22.在△EE′C中,EE′=22,E′C=1,EC=3,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.三、板书设计1.旋转的概念将一个图形绕一个顶点按照某个方向转动一个角度,这样的图形运动称为旋转.2.旋转的性质一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角,对应线段相等,对应角相等.
故线段d的长度为94cm.方法总结:利用比例线段关系求线段长度的方法:根据线段的关系写出比例式,并把它作为相等关系构造关于要求线段的方程,解方程即可求出线段的长.已知三条线段长分别为1cm,2cm,2cm,请你再给出一条线段,使得它的长与前面三条线段的长能够组成一个比例式.解析:因为本题中没有明确告知是求1,2,2的第四比例项,因此所添加的线段长可能是前三个数的第四比例项,也可能不是前三个数的第四比例项,因此应进行分类讨论.解:若x:1=2:2,则x=22;若1:x=2:2,则x=2;若1:2=x:2,则x=2;若1:2=2:x,则x=22.所以所添加的线段的长有三种可能,可以是22cm,2cm,或22cm.方法总结:若使四个数成比例,则应满足其中两个数的比等于另外两个数的比,也可转化为其中两个数的乘积恰好等于另外两个数的乘积.
(三)成比例线段的概念1、一般地,在四条线段中,如果 等于 的比,那么这四条线段叫做成比例线段。(举例说明)如:2、四条线段a,b ,c,d成比例,有顺序关系。即a,b,c,d成比例线段,则比例式为:a:b=c:d;a,b, d,c成比例线段,则比例式为:a:b=d:c3思考:a=12,b=8,c=6,d=4成比例吗?a=12,b=8,c=15,d=10呢?三、例题解析: 例1、A、B两地的实际距离AB= 250m,画在一张地图上的距离A'B'=5 cm,求该地图的比例尺。例2:已知,在Rt△ABC中,∠C=90°,∠A=30°,斜边AB=2。求⑴ ,⑵ 四、巩固练习1、已知某一时刻物体高度与其影长的比值为2:7,某 天同一时刻测得一栋楼的影长为30米,则这栋楼的高度为多少?2、某地图上的比例尺为1:1000,甲,乙两地的实际距离为300米,则在地图上甲、乙两地的距离为多少?3、已知线段a,d,b,c是成比例线段,其中a=4,b=5,c=10,求线段d的长。
●教学目标(一)教学知识点1.相似三角形的周长比,面积比与相似比的关系.2. 相似三角形的周长比,面积比在实际中的应用.(二)能 力训练要求1.经历探索相似三角形的 性质的过程,培养学生的探索能力.2.利用相似三角形的性质解决实际问题训练学生的运用能力.(三)情 感与价值观要求1.学 生通过交流、归纳,总结相似三角形的周长比、面积比与相似比的关系,体会知识迁移、温故知新的好处.2.运用相似多边形的周长比,面积比解决实际问题,增强学生对知识的应用意识.●教学重点1.相似三角形的周长比、面积比与相似比关系的推导.2.运用相似三角形的比例关系解决实际问题.●教学难点相似三角形周长比、面积比与相似比的关系的推导及运用.●教学方法引导启发式通过温故知新,知识迁移,引导学生发现新的结论,通过比较、分析,应用获得的知识达到理解并掌握的 目的.●教具准备投影片两张第一张:(记作§4.7.2 A)第二张:(记作§4.7.2 B)
解:∵CF平分∠ACB,DC=AC,∴CF是△ACD的中线,即F是AD的中点.∵点E是AB的中点,∴EF∥BD,且EFBD=12.∴∠B=∠AEF,∠ADB=∠AFE,∴△AEF∽△ABD.∴S△AEFS△ABD=(12)2=14.∵S△AEF=S△ABD-S四边形BDFE=S△ABD-6,∴S△ABD-6S△ABD=14.∴S△ABD=8,即△ABD的面积为8.易错提醒:在运用“相似三角形的面积比等于相似比的平方”这一性质时,同样要注意是对应三角形的面积比,在本题中不要犯由EF:BD=1:2得S△AEF:S△ABD=1:2,或S△AEF:S四边形BDFE=1:2之类的错误.三、板书设计相似三角形的周长和面积之比:相似三角形的周长比等于相似比,面积比等于相似比的平方.经历相似三角形的性质的探索过程,培养学生的探索能力.通过交流、归纳,总结相似三角形的周长比、面积比与相似比的关系,体验化归思想.运用相似多边形的周长比,面积比解决实际问题,训练学生的运用能力,增强学生对知识的应用意识.
解析:点E是BC︵的中点,根据圆周角定理的推论可得∠BAE=∠CBE,可证得△BDE∽△ABE,然后由相似三角形的对应边成比例得结论.证明:∵点E是BC︵的中点,即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法总结:圆周角定理的推论是和角有关系的定理,所以在圆中,解决相似三角形的问题常常考虑此定理.三、板书设计圆周角和圆心角的关系1.圆周角的概念2.圆周角定理3.圆周角定理的推论本节课的重点是圆周角与圆心角的关系,难点是应用所学知识灵活解题.在本节课的教学中,学生对圆周角的概念和“同弧所对的圆周角相等”这一性质较容易掌握,理解起来问题也不大,而对圆周角与圆心角的关系理解起来则相对困难,因此在教学过程中要着重引导学生对这一知识的探索与理解.还有些学生在应用知识解决问题的过程中往往会忽略同弧的问题,在教学过程中要对此予以足够的强调,借助多媒体加以突出.
2、掌握好躲、爬、钻、跑的技能,提高身体运动质素。3、培养幼儿互相关心的情感,增强幼儿的安全意识。 活动准备:课件《地震发生时,该如何应变》;发生地震的影片一张;桌子、椅子、脸盆、床、锅炉、衣柜等各7份;公共汽车3辆;商店一个(用kt板制作一个大门和两面墙。 活动过程:一、活动的导入:孩子们随着《小红军》的音乐,跳着舞进入场地。二、观看发生地震的立体影片。小朋友们,今天除了我们这些小红军之外,还来了许多红军叔叔呢,现在,我们一起来看看。
准备1、老虎、豹、猩猩、大象的毛绒玩具或自制指偶。2、绘画材料和工具。 过程1、爱开玩笑的纳纳。☆老虎纳纳爱开玩笑。 一天夜里,它趁豹子熟睡,在豹子身上涂满了黄颜色,你们猜会发生什么事?☆一天,他邀请猩猩来吃那些用橡胶做的香蕉,你们猜猩猩会怎么想?☆还有一回,他把大象的鼻子系成了一个结,你们猜后来怎么办?☆你们觉得纳纳这样做好不好?为什么? 2、不受欢迎的纳纳。☆纳纳开的玩笑虽不伤人,但动物们都觉得不安宁。有一天,大伙儿决定想一个办法让纳纳改正缺点。☆你们能猜出动物们想出来的办法吗?☆教师讲述故事第二部分,引导幼儿说说纳纳遇到了什么事。☆大伙儿都不理睬纳纳,纳纳心里怎么想?☆后来纳纳是怎么做的?小动物原谅他了吗? 3、我也曾开过玩笑。☆完整能听故事一遍。☆你喜欢纳纳吗?为什么?☆你有没有做过像纳纳那样的事情?结果怎么样?☆你觉得怎样开玩笑才不会让朋友生气?☆引导幼儿画一张画送给好朋友,对自己以前的过错表示歉意。
2、了解保护骨骼的基本方法。愿意多参加体育锻炼,增强身体素质。 活动准备:幻灯片。 活动过程:一、猜谜语。二百零六块,人人随身带,从来不敢放,总是架起来。猜一样人人都有的东西,这是什么?(骨骼)二、骨骼的构造。1、骨骼在哪里?幼儿用手摸摸、找找。感知骨骼的存在。(结合英语my body讲讲身体中有骨骼地的方。如:拍拍头,谁说:head。摸摸肩,说:shoulder……。)
1、交流分享,说说生活中的垃圾。 师:孩子们,老师给大家布置了任务,请大家记录这几天家里产生的垃圾,你们完成了吗?(完成了)快把记录结果和旁边的小伙伴说说吧! (1)小组交流。(拿着记录表,互相说说) (2)个幼介绍。(谁想把记录结果说给大家听听?)
活动过程:一、开始部分: 请小朋友为客人老师表演歌曲《小花、小树》。通过小树长高了引出主题。二、进行部分: 1、教师出视高人矮人图片引起幼儿兴趣。“图片上是谁,有几个人,他们有什么不一样?他们还给我们小朋友带来了礼物,一会儿老师就帮他们把礼物送给你们。”2、教师以讲故事的形式进入主题。“高人和矮人是一对好朋友,他们每天都要一起到树林里散步,可是今天他们来到树林时发现以前散步时的音乐被换了,他们不知道哪一段音乐是高人散步时用的,哪一段是矮人散步时用的音乐。小朋友你们能帮助他们吗?”3、初步分析高低音。“我们这里有他们散步时的音乐,仔细听听现在是谁在散步,是高人在散步,仔细听听这是谁在散步,是矮人在散步。高人走路的声音很高,矮人走路的声音很低。
2、观看幼儿示范,倾听教师讲解,学习在指定范围内画彩色的点,表现美丽的大鱼。 3、学会认真、耐心地进行美术活动。 活动准备: 1、幼儿用书人手一册,棉签若干,颜料盘每组2-3盘。 2、水墨画、油画棒、水彩等形式表现的各种形态的鱼。 3、在白纸上画一条鱼的线条。 活动过程:一、听谜面、猜谜语、引出主题。 教师:有头没有颈,身上亮晶晶,有翅不能飞,没脚倒能行。这是一种生活在水里的动物,请你猜一猜这是什么动物?
2、尝试在手套上画,贴的技能。 3、培养幼儿在手的造型上进行大胆夸张的装饰、涂画,能打扮出美观的图案。 活动准备 1、课前教幼儿玩手形游戏。 2、手套每人1副、水彩笔、胶棒、彩色纸、皮筋、幕、磁带、魔术用具活动过程一、以游戏的形式导入主题 1、请幼儿带着手套听音乐进入教室。 2、教师在幕后分别出示1只手1双手吸引幼儿的注意,“啊!”这是一双会变魔术的手。 请魔术师随着音乐变魔术。 3、请幼儿上来尝试变魔术,用手套做各种不同的造型。让幼儿说说自己做的是什么,是怎么变的。请全体幼儿来学一学。
(一)、亚太经济合作组织的宗旨和作用1、亚太经合组织简介:(1)、地位——当今世界最大的区域性经济合作组织(2)、性质——是促进亚太国家和地区经济合作、推动共同发展的主要机构。亚太经济合作组织(APEC,简称亚太经合组织),是当今世界最大的区域性经济合作组织,是促进亚太国家和地区经济合作、推动共同发展的主要机构。相关链接:1989年11月,在澳大利亚的倡议下,澳大利亚、美国、加拿大、日本、韩国、新西兰和东盟六国的外交与经济部长在澳大利亚首都堪培拉召开部长级会议,正式宣告亚太经合组织成立。此后,该组织不断扩大,到2004年底共有21个成员,既有美国、日本等发达国家,也有中国、马来西亚、墨西哥等发展中国家。亚太经合组织的宗旨是:为本地区人民的共同利益而保持经济的增长与发展,促进成员间经济的相互依存,加强开放的多边贸易体制,减少区域贸易和投资壁垒。
孔夫子被称为圣人,但他还是不耻下问,他曾以郯子、苌弘等人为师,他的学问绝对不比他们差,只是想学到其他他不会的知识罢了。他说:“三人行,必有我师焉。”民间俗语说:“三个臭皮匠,顶个诸葛亮。”的确是这样,不管是谁,都会有不懂的地方,例如,小学生做的数学智力题,有些连博士生都做不出来,就算你是大学中文系毕业的,也不会熟悉到字典里的每个字。人们的学问远远不如圣人,可他们也不肯向老师学习。这样的话,人又会有什么进步呢?老师无处不在,却往往被忽略,甚至耻笑。巫医、乐师和那些工匠们,经常互相学习。而那些士大夫们,自己没有学问,一听到有人称“老师”称“弟子”等等,就许多人聚在一块儿讥笑人家,还说:“他和他年龄差不多,道德学问也差不多啊,以地位低的人为师,就可羞耻,以官职高的人为师,就近乎谄媚!”听起来好像老师的标准都是他们定的!老师,可以是各个方面的传授者,却有人以向那些人学习为耻!