(三)服务经济民生强化机构编制管理。持续抓好“三定”规定执行情况跟踪问效,统筹事业编制管理,探索人才编制专项管理,研究制定《区人才专项事业管理暂行办法(试行)》。持续推行“编制+员额”总量控制管理模式,形成教师编制优化调整方案。积极对上争取,为区中医院做优做强提供机构编制保障,探索公立医院、社区卫生服务中心编制统筹使用。持续探索编外人员管理新模式,推动全区编外冗余人员清理消化和合同主体转变。(四)维护法定权威做好监督检查工作。结合巡察、选人用人专项检查和实名制系统发现问题,做好机构编制监督检查工作。根据机构改革进度,重点监督检查机构改革方案、重大体制机制和职责调整中涉及机构编制事项的落实情况。做好事业单位登记管理、中文域名和网上标识工作,开展“双随机、一公开”公示信息抽查。开展人员编制一体化管理平台网上集中联调联试,做好全区实名制信息和数据核查工作。
二、二季度工作打算坚持把“D的建设”作为国有企业发展的初心,强化高质量发展的引领。(一)持续抓好理论知识学习。严格执行“第一议题”和中心组旁听制度,实现D委理论学习教育化常态化。采取辅导讲座、专家授课、外出观摩、观看专题片等形式,进一步增强学习效果。把学习D的二十大精神作为D员教育培训的重要内容,组织开展“学习二十大精神”主题D日、“我来讲DK”、现场红色教育等活动,提高全体D员干部的政治大局观、科学发展观。(二)持续抓好D建品牌创建。以各基层D支部为主体,坚持“参与性强、重点突出、对象鲜明”的导向,每个支部分别创建1至2个D建品牌,实现由“特色”向“品牌”的升华。(三)持续抓好形势任务教育。持续深入开展“两珍惜、两保持”形势任务教育,编写形势任务教育辅导材料,加强宣教宣讲,引导各级团结一致向前看,凝心聚力谋发展。注重发挥新闻媒体舆论引导作用,在AAA公众号、矿区广播开办形势任务教育专栏,通过创作微电影、短视频、录制广播等形式,扩大形势任务教育效果。
(二)持续深化妇联组织改革“强基增效”行动。深化妇联组织改革和建设,有效发挥桥梁纽带作用,用心、用情做好妇女儿童和家庭工作。巩固“破难争星”成果,强根基、扩覆盖、补短板、增活力,创新实施“强基增效”行动。(三)坚定不移围绕中心,服务大局。实施“乡村振兴巾帼行动”,围绕“五美”标准,深化“美丽庭院”创建,引导妇女积极投身人居环境整治,助力美丽乡村建设。实施“创业创新巾帼行动”,引导妇女参与乡村振兴巾帼行动,深化岗位建功活动,激励各行各业妇女立足本职岗位建功立业。(四)加强家庭家教家风建设。实施“家家幸福安康工程”,常态化开展寻找“最美家庭”、“最美绿色家庭”;协同推进“知子花开”巾帼家庭教育指导服务体系建设,依托社区家庭教育指导服务站,开展形式多样的家庭教育指导实践活动。
1.多渠道争取防灾减灾资金保障。目前,我县在防灾减灾基础设施建设、救灾物资储备、防灾减灾科学研究和技术推广应用等方面的经费投入明显不足,资金来源渠道单一,主要依靠财政拨款。建议多渠道增加经费投入,为防灾减灾提供资金保障:一是坚持将防灾减灾所需资金纳入每年的经费预算,重点支持防灾减灾基础设施建设,救灾物资储备体系建设和防灾减灾应急队伍建设,积极推进防灾减灾信息化、网络化建设,不断改善防灾减灾技术装备,大力开展防灾减灾科技研发和技术推广应用工作。二是采取给予防灾减灾引导资金的方式,促进地方政府增加经费投入,同时引导科研机构和相关企业投资防灾减灾技术研发和产业化生产。三是建立社会防灾减灾基金,吸收企业、社会团体、公众及海外人士对防灾减灾的捐赠。2.强化防灾减灾宣传工作。
(一)说教法本节课我先出示情境图,鼓励学生分析情境中的数学信息和数量关系,明确所要解决的问题,然后了解要解决这个问题需要什么样的条件,进而列出算式。接着讨论具体的计算方法。教材中呈现了两种计算方法。在这个过程中,先让学生自主进行计算,再组织讨论和交流算法之间的联系,明白分数混合运算的顺序。通过本节教学,使学生学会有顺序的观察题、认真审题、分析数量关系、正确计算、概括总结、检查的学习习惯。(二)说学法本节课是分数加减法的第二课时,因为前面学习异分母分数的加减法以及应用异分母加减的知识,因此,大多数学生对这一类型的加减法已经有了一定的计算能力和计算方法,基于此,我在教学中将加减运算的学习和解决问题结合起来,在加强学生的计算能力的同时,更侧重了学生提出问题和解决问题的能力的训练,也就是让学生在经历探索运算方法的过程中,体验算法多样化。
摆上桌的是:一盘肥腴的整鸡,是蒸的,配有一碗汤;一盘风干猪肉片,切得有一厘米厚,肥的白、瘦的红,咸香气馋人;芹菜炒豆腐干,在盘子里堆得老高,还有一碗山药排骨汤。这一组粗、土、简、拙的农家菜品,就是小时候去乡下舅舅家里吃的啊,舅妈的厨艺,还比这要精细很多,哪会把肉片切得这么厚。
2022年,我县减灾救灾工作在县委、县政府的正确领导和上级业务部门的关心指导下,我们已做好冬春救助和灾害应急救助为抓手,不断强救灾工作的规范化、制度化和息化建设,创新工作思路,深化救助措施和积极做好全国自然灾害综合风险普查,切实保障灾民和受灾困难群基本生活保障。现就2023年我县防灾减灾救灾工作开展情况总结如下: ,:一、健全组织机构,落实工作职责关于防灾减灾救灾工作,我县始终坚持“预防为主、防御与救助相结合”的方针,推行“政府主导、成员运作、参与”模式,不断强化减灾防灾救灾共管理功能和社会服务功能。一是建立灾害预警发布机制、减灾防灾救灾综合协调和灾害应急管理体系、xx县应对自然灾害会商制度等,强部门之间沟通,确保自然灾害发生前早预警、早防范,灾害发生后早投入,将灾害造成的损失减小到最低。二是强部署,积极开展防灾减灾救灾宣传。紧紧围绕“x.xx防灾减灾日”和“国际减灾日”宣传活动主题,做好防汛抗旱、防震减灾、森林防火等有关知识宣传,提高群防灾减灾意识,努力营造全民参与防灾减灾的化氛围。通过开设专栏专题、展版宣传、印发发放科普刊物等各种形式,全方位做好防灾减灾救灾宣传工作。在两次宣传过程中,共发放宣传手册xxxxx余份,悬挂横幅xxx幅,设立展板xx块,发放宣传手提袋xxxxx余个,发放小礼品xxxxx余份。除此之外,还要求乡镇、社区、学校等广泛开展防灾减灾救灾知识宣传和组织开展避险应急演练,增强大家的防灾减灾意识和自救互救能力。三是建立和完善灾害息员息库,我县分别在2022年x月、x月对灾害息员息库息进行两次新,目前全县共有灾害息员xxx名,及时对全县xx个乡镇、街道办事处,xxx个行政村灾害息员进行新,防灾减灾救灾工作网格化管理工作进一步巩固。并要求全县灾害息员运用全国灾情管理系统手机版,一旦发生灾情,各行政村可以及时通过系统进行上报,确保了灾情报送的准确性和及时性。
课程:数学课题: 3.1.1函数的概念课型:讲授课课时:2课时授课班级:2015级南口班授课时间:2016年3月1日授课地点:南口校区教 学 目 标知识目标1.能用函数语言描述图像、解析式中自变量与函数值的依赖关系; 2.会计算函数的定义域,理解值域的含义 3.会用语言表述自变量与函数值间的对应关系能力目标通过对实例的分析,培养学生的观察能力,抽象概括及逻辑思维能力 通过计算函数的定义域,培养学生的计算能力素养目标函数概念的思想蕴含了很多数学思维,也渗透生活中及其他学科范围内,通过学习使学生认同函数的抽象性。教学重 点理解函数的概念教学难 点判断两个函数是否相同教学方 法引导启发,讲练结合教学资 源演示文稿板 书 设 计3.1函数的概念 设集合A、B为非空数集,对于确定的对 应法则f下,在集合A中取定任意一个数x, 在集合B中都有唯一确定的数f(x)与之相 对应,则称f:A→B为集合A到集合B的一 个函数. 记作:y=f(x),x∈A X叫自变量,y叫函数值,集合A叫函数的 定义域,所有函数值组成的集合叫值域。
重点分析:本节课的重点是离散型随机变量的概率分布,难点是理解离散型随机变量的概念. 离散型随机变量 突破难点的方法: 函数的自变量 随机变量 连续型随机变量 函数可以列表 X123456p 2 4 6 8 10 12
“用计算器计算”是江苏国标版四年级上册数学第十一单元的教学内容这部分内容是在学生熟练掌握了整数的四则计算法则及两步混合运算的基础上进行教学。通过学习使学生可以借助计算器进行较大数目的四则运算并借助计算器来探索有关规律有利于帮助学生形成初步的探索和解决问题的能力。 本单元内容分两段安排,第一段先认识计算器了解计算器的基本功能和操作方法再学习用计算器进行四则计算的方法。第二段教学用计算器进行两步混合运算并安排了练习十。教材在“想想做做”和练习十中还编排了一些探索数学规律的趣题并通过“你知道吗”介绍“改错键”等常用的功能键以及有关计算工具发展的历史让学生了解计算工具的演变过程感受人类科技的进步与发展。最后教材还安排了实践活动《一亿有多大》帮助学生形成良好的数感。本单元分四课时完成今天我说的是第一课时。
探索1:上节我们列出了与地毯的花边宽度有关的方程。地毯花边的宽x(m),满足方程 (8―2x)(5―2x)=18也就是:2x2―13x+11=0你能估算出地毯花边的宽度x吗?(1)x可能小于0吗?说说你的理由;_____________________________.(2)x可能大于4吗?可能大于2.5吗?为什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花边的宽x(m)是多少吗?还有其他求解方法吗?与同伴交流。探索2:梯子底端滑动的距离x(m)满足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑动距离x(m)的大致范围吗?(2)x的整数部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___进一步计算x x2+12x-15 所以 ___<x<___因此x 的整数部分是___,十分位是___.三、当堂训练:完成课本34页随堂练习四、学习体会:五、课后作业
新知探究前面我们研究了两类变化率问题:一类是物理学中的问题,涉及平均速度和瞬时速度;另一类是几何学中的问题,涉及割线斜率和切线斜率。这两类问题来自不同的学科领域,但在解决问题时,都采用了由“平均变化率”逼近“瞬时变化率”的思想方法;问题的答案也是一样的表示形式。下面我们用上述思想方法研究更一般的问题。探究1: 对于函数y=f(x) ,设自变量x从x_0变化到x_0+ ?x ,相应地,函数值y就从f(x_0)变化到f(〖x+x〗_0) 。这时, x的变化量为?x,y的变化量为?y=f(x_0+?x)-f(x_0)我们把比值?y/?x,即?y/?x=(f(x_0+?x)-f(x_0)" " )/?x叫做函数从x_0到x_0+?x的平均变化率。1.导数的概念如果当Δx→0时,平均变化率ΔyΔx无限趋近于一个确定的值,即ΔyΔx有极限,则称y=f (x)在x=x0处____,并把这个________叫做y=f (x)在x=x0处的导数(也称为__________),记作f ′(x0)或________,即
4.写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.(1)一个袋中装有8个红球,3个白球,从中任取5个球,其中所含白球的个数为X.(2)一个袋中有5个同样大小的黑球,编号为1,2,3,4,5,从中任取3个球,取出的球的最大号码记为X.(3). 在本例(1)条件下,规定取出一个红球赢2元,而每取出一个白球输1元,以ξ表示赢得的钱数,结果如何?[解] (1)X可取0,1,2,3.X=0表示取5个球全是红球;X=1表示取1个白球,4个红球;X=2表示取2个白球,3个红球;X=3表示取3个白球,2个红球.(2)X可取3,4,5.X=3表示取出的球编号为1,2,3;X=4表示取出的球编号为1,2,4;1,3,4或2,3,4.X=5表示取出的球编号为1,2,5;1,3,5;1,4,5;2,3,5;2,4,5或3,4,5.(3) ξ=10表示取5个球全是红球;ξ=7表示取1个白球,4个红球;ξ=4表示取2个白球,3个红球;ξ=1表示取3个白球,2个红球.
温故知新 1.离散型随机变量的定义可能取值为有限个或可以一一列举的随机变量,我们称为离散型随机变量.通常用大写英文字母表示随机变量,例如X,Y,Z;用小写英文字母表示随机变量的取值,例如x,y,z.随机变量的特点: 试验之前可以判断其可能出现的所有值,在试验之前不可能确定取何值;可以用数字表示2、随机变量的分类①离散型随机变量:X的取值可一、一列出;②连续型随机变量:X可以取某个区间内的一切值随机变量将随机事件的结果数量化.3、古典概型:①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等。二、探究新知探究1.抛掷一枚骰子,所得的点数X有哪些值?取每个值的概率是多少? 因为X取值范围是{1,2,3,4,5,6}而且"P(X=m)"=1/6,m=1,2,3,4,5,6.因此X分布列如下表所示
1.确定研究对象,明确哪个是解释变量,哪个是响应变量;2.由经验确定非线性经验回归方程的模型;3.通过变换,将非线性经验回归模型转化为线性经验回归模型;4.按照公式计算经验回归方程中的参数,得到经验回归方程;5.消去新元,得到非线性经验回归方程;6.得出结果后分析残差图是否有异常 .跟踪训练1.一只药用昆虫的产卵数y与一定范围内的温度x有关,现收集了6组观测数据列于表中: 经计算得: 线性回归残差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分别为观测数据中的温度和产卵数,i=1,2,3,4,5,6.(1)若用线性回归模型拟合,求y关于x的回归方程 (精确到0.1);(2)若用非线性回归模型拟合,求得y关于x回归方程为 且相关指数R2=0.9522. ①试与(1)中的线性回归模型相比较,用R2说明哪种模型的拟合效果更好 ?②用拟合效果好的模型预测温度为35℃时该种药用昆虫的产卵数.(结果取整数).
还有其他解法吗?从中让学生体会解一元一次方程就是根据是等式的性质把方程变形成“x=a(a为已知数)”的形式(将未知数的系数化为1),这也是解方程的基本思路。并引导学生回顾检验的方法,鼓励他们养成检验的习惯)5、提出问题:我们观察上面方程的变形过程,从中观察变化的项的规律是什么?多媒体展示上面变形的过程,让学生观察在变形过程中,变化的项的变化规律,引出新知识.师提出问题:1.上述演示中,题目中的哪些项改变了在原方程中的位置?怎样变的?2.改变的项有什么变化?学生活动:分学习小组讨论,各组把讨论的结果上报教师,最好分四组,这样节省时间.师总结学生活动的结果:-2x改变符号后从等号的一边移到另一边。师归纳:像上面那样,把方程中的某项改变符号后,从方程的一边移到另一边的变形叫做移项.这里应注意移项要改变符号.
1.上述演示中,题目中的哪些项改变了在原方程中的位置?怎样变的?2.改变的项有什么变化?学生活动:分学习小组讨论,各组把讨论的结果上报教师,最好分四组,这样节省时间.师总结学生活动的结果:-2x改变符号后从等号的一边移到另一边。师归纳:像上面那样,把方程中的某项改变符号后,从方程的一边移到另一边的变形叫做移项.这里应注意移项要改变符号.(三)理解性质,应用巩固师提出问题:我们可以回过头来,想一想刚解过的方程哪个变化过程可以叫做移项.学生活动:要求学生对课前解方程的变形能说出哪一过程是移项.对比练习: 解方程:(1) X+4=6 (2) 3X=2X+1(3) 3-X=0 (4) 9X=8X-3学生活动:把学生分四组练习此题,一组、二组同学(1)(2)题用等式性质解,(3)(4)题移项变形解;三、四组同学(1)(2)题用移项变形解,(3)(4)题用等式性质解.师提出问题:用哪种方法解方程更简便?解方程的步骤是什么?(答:移项法;移项、化简、检验.)
②.通过“由文字语言到符号语言”再“由符号语言到文字语言”让学生从正反两方面双向建构.突破难点策略:①.分三步分散难点:引入时大量的实际情景,让学生体会到代数式存在的普遍性;让学生给自己构造的一些简单代数式赋予实际意义,进一步体会代数式的模型思想;通过“主题研究”等环节进一步提高解决实际问题的能力.②.适时安排小组合作与交流,使学生在倾听、质疑、说服、推广的过程中得到“同化”和“顺应”,直至豁然开朗,突破思维的瓶颈.2.生成预设为生成服务,本案编代数式、主题研究等环节的设计为学生精彩的生成提供了很好的平台,在实际教学过程中,教师要注重生成信息的捕捉,善于发现学生思维的亮点,及时进行引导和激励,并根据具体教学对象,适当调整教与学,使教学过程真正成为生成教育智慧和增强实践能力的过程.让预设与生成齐飞.
方法总结:(1)若被开方数中含有负因数,则应先化成正因数,如(3)题.(2)将二次根式尽量化简,使被开方数(式)中不含能开得尽方的因数(因式),即化为最简二次根式(后面学到).探究点三:最简二次根式在二次根式8a,c9,a2+b2,a2中,最简二次根式共有()A.1个 B.2个C.3个 D.4个解析:8a中有因数4;c9中有分母9;a3中有因式a2.故最简二次根式只有a2+b2.故选A.方法总结:只需检验被开方数是否还有分母,是否还有能开得尽方的因数或因式.三、板书设计二次根式定义形如a(a≥0)的式子有意义的条件:a≥0性质:(a)2=a(a≥0),a2=a(a≥0)最简二次根式本节经历从具体实例到一般规律的探究过程,运用类比的方法,得出实数运算律和运算法则,使学生清楚新旧知识的区别和联系,加深学生对运算法则的理解,能否根据问题的特点,选择合理、简便的算法,能否确认结果的合理性等等.
属于此类问题一般有以下三种情况①具体数字,此时化简的条件已暗中给定,②恒为非负值或根据题中的隐含条件,如(1)小题。③给出明确的条件,如(2)小题。第二类,需讨论后再化简。当题目中给定的条件不能判定绝对值符号内代数式值的符号时,则需讨论后化简,如(4)小题。例3.已知a+b=-6,ab=5,求 的值。解:∵ab=5>0,∴a,b同号,又∵a+b=-6<0,∴a<0,b<0∴ .说明:此题中的隐含条件a<0,b<0不能忽视。否则会出现错误。例4.化简: 解:原式=|x-6|-|1+2x|+|x+5|令x-6=0,得x=6,令1+2x=0,得 ,令x+5=0,得x=-5.这样x=6, ,x=-5,把数轴分成四段(四个区间)在这五段里分别讨论如下:当x≥6时,原式=(x-6)-(1+2x)+(x+5)=-2.当 时,原式=-(x-6)-(1+2x)+(x+5)=-2x+10.当 时,原式=-(x-6)-[-(1+2x)]+(x+5)=2x+12.当x<-5时,原式=-(x-6)+(1+2x)-(x+5)=2.说明:利用公式 ,如果绝对值符号里面的代数式的值的符号无法决定,则需要讨论。方法是:令每一个绝对值内的代数式为零,求出对应的“零点”,再用这些“零点”把数轴分成若干个区间,再在每个区间内进行化简。