二、学情分析本单元是在学生已经学习了整数除法、分数乘法的基础上进行教学的,是小学阶段四则运算中最后一部分的内容。学生学习了整数、小数的四则运算,而分数只学习了加法、减法和乘法,因此对于学习分数除法有一定的认知需求,安排分数除法教学符合学生的认知发展特点。通过整数除法、分数乘法的学习,学生对计算的学习有一定的经验,并具有一定的解决问题的能力,这时候进行分数除法教学,学生有能力将原有的计算方法和经验进行迁移。学生在学习分数乘法时,已经掌握了一些解决分数乘法问题的方法,这时候进行分数除法教学可以促进知识之间的联系,提高学生分析问题和解决问题的能力。教师在教学时,应充分利用资源,激活学生已有的知识经验,引导他们展开类比思维,以促进学习的正向迁移。三、教学目标根据新课标的要求和教材的特点,结合五年级学生的认知能力,本节课我确定如下的教学目标:
教学重点:体验1分时间的长短,建立一分钟的概念。教学难点:估计一分钟有多长学情分析本班学生对时分的知识在一年级已经有了一个初步的认识。能区分时针、分针和秒针;能初步认识钟面上的整点、半点;但是整点刚过和接近整点学生区分还有困难。二、说学生本节课的教学对象是二年级的学生,他们生活经验少,但思维比较活跃,他们还是以无意注意为主,而无意注意是由刺激物的特点引起的,在教学时,尽可能创设生动的数学活动,密切数学与生活的联系,使知识变成学生的切身需要,使他们在玩中学,在动中求知,通过操作交流去探索创新。三、说教学法在教材的处理上,我联系生活实际,用灵活多变的活动激发学生的学习情感,充分放手让学生大量开展多种形式有趣的实践活动,开放的情境,引导学生体验。使学生较好的认识一分并且对于一分能干什么也会有深刻的认识。
本课内容是普通学校教材,主要针对的是普通学校学生,主要包括了四个知识点,第一个问题由拨计数器的情境出发,从序数的角度,由千以内的数和一千之间的关系引出对“千”的认识。第二个问题结合拼摆小方块的活动,体会“个”、“十”、“百”、“千”之间的十进关系,直观感受“千”的大小。第三个问题就是结合数数活动进一步感受“千”的意义,掌握三位数的数数方法。第四就是安排的“试一试”,集合估计和对比想象的活动,发展学生的数感。针对普通学生这是2课时的内容,第一课时安排解决前三个问题,这对于我们听障学生来说课时容量太大,另外今天是微课只有30分钟,尤其是第三个问题数数更是难点,遇到9加1变十、99加1变百、999加1变千时的转化更是难点,所以本节课我只安排了第一和第二个问题,并且在教学第一个问题“千”的引入中加入“9加1变十、99加1变百、999加1变千”的内容,为学生下节课学习数数分散了难点,提前做好了铺垫。
1.能从统计图中获取信息,并求出相关数据的平均数、中位数、众数;(重点)2.理解并分析平均数、中位数、众数所体现的集中趋势.(难点)一、情境导入某次射击比赛,甲队员的成绩如下:(1)根据统计图,确定10次射击成绩的众数、中位数,说说你的做法,并与同伴交流.(2)先估计这10次射击成绩的平均数,再具体算一算,看看你的估计水平如何.二、合作探究探究点一:从折线统计图分析数据的集中趋势广州市努力改善空气质量,近年空气质量明显好转,根据广州市环境保护局公布的2006~2010年这五年各年的全年空气质量优良的天数,绘制成折线图如图所示.根据图中信息回答:(1)这五年的全年空气质量优良天数的中位数是________;(2)这五年的全年空气质量优良天数与它前一年相比较,增加最多的是________年(填写年份);(3)求这五年的全年空气质量优良天数的平均数.解析:(1)由图知,把这五年的全年空气质量优良天数按照从小到大的顺序排列为:333,334,345,347,357,所以中位数是345;
1.会用二次根式的四则运算法则进行简单地运算;(重点)2.灵活运用二次根式的乘法公式.(难点)一、情境导入下面正方形的边长分别是多少?这两个数之间有什么关系,你能借助什么运算法则或运算律解释它?二、合作探究探究点一:二次根式的乘除运算【类型一】 二次根式的乘法计算:(1)3×5; (2)13×27;(3)2xy×1x; (4)14×7.解:(1)3×5=15;(2)13×27=13×27=9=3;(3)2xy×1x=2xy×1x=2y;(4)14×7=14×7=72×2=72.方法总结:几个二次根式相乘,把它们的被开方数相乘,根指数不变,如果积含有能开得尽方的因数或因式,一定要化简.【类型二】 二次根式的除法计算a2-2a÷a的结果是()A.-a-2 B.--a-2C.a-2 D.-a-2解析:原式=a2-2aa=a(a-2)a=a-2.故选C.
方法总结:(1)若被开方数中含有负因数,则应先化成正因数,如(3)题.(2)将二次根式尽量化简,使被开方数(式)中不含能开得尽方的因数(因式),即化为最简二次根式(后面学到).探究点三:最简二次根式在二次根式8a,c9,a2+b2,a2中,最简二次根式共有()A.1个 B.2个C.3个 D.4个解析:8a中有因数4;c9中有分母9;a3中有因式a2.故最简二次根式只有a2+b2.故选A.方法总结:只需检验被开方数是否还有分母,是否还有能开得尽方的因数或因式.三、板书设计二次根式定义形如a(a≥0)的式子有意义的条件:a≥0性质:(a)2=a(a≥0),a2=a(a≥0)最简二次根式本节经历从具体实例到一般规律的探究过程,运用类比的方法,得出实数运算律和运算法则,使学生清楚新旧知识的区别和联系,加深学生对运算法则的理解,能否根据问题的特点,选择合理、简便的算法,能否确认结果的合理性等等.
内容:情景1:多媒体展示:提出问题:从二教楼到综合楼怎样走最近?情景2:如图:在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?意图:通过情景1复习公理:两点之间线段最短;情景2的创设引入新课,激发学生探究热情.效果:从学生熟悉的生活场景引入,提出问题,学生探究热情高涨,为下一环节奠定了良好基础.第二环节:合作探究内容:学生分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线.让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法.
(2)DF∥BE.∵DE平分∠ADC,BF平分∠ABC(已知),∴∠3=12∠ADC,∠2=12∠ABC(角平分线定义).∵∠ADC=∠ABC(已知),∴∠2=∠3(等量代换).又∵∠1=∠2(已知),∴∠1=∠3(等量代换),∴DF∥BE(内错角相等,两直线平行).(3)AD∥BC.由(2)知∠3=∠1,又∵DE平分∠ADC(已知),∴∠ADE=∠3(角平分线定义),∠ADE=∠1(等量代换).∴∠A=180°-∠ADE-∠1=180°-2∠ADE=180°-∠ADC=180°-∠ABC(三角形内角和为180°及等量代换),即∠A+∠ABC=180°,∴AD∥BC(同旁内角互补,两直线平行).方法总结:解此类题应首先结合图形猜测结论,然后证明.证明两条直线平行,一般先找它们的截线,再求同位角相等(或内错角相等,同旁内角互补)来说明两直线平行.若没有公共截线,则需作出两直线的截线辅助证明.三、板书设计平行线,的判定)判定公理:同位角相等,两直线平行判定定理内错角相等,两直线平行同旁内角互补,两直线平行本节课通过经历探索平行线的判定方法的过程,发展学生的逻辑推理能力,逐步掌握规范的推理论证格式.
方法总结:平行线与角的大小关系、直线的位置关系是紧密联系在一起的.由两直线平行的位置关系得到两个相关角的数量关系,从而得到相应角的度数.探究点四:平行于同一条直线的两直线平行如图所示,AB∥CD.求证:∠B+∠BED+∠D=360°.解析:证明本题的关键是如何使平行线与要证的角发生联系,显然需作出辅助线,沟通已知和结论.已知AB∥CD,但没有一条直线既与AB相交,又与CD相交,所以需要作辅助线构造同位角、内错角或同旁内角,但是又要保证原有条件和结论的完整性,所以需要过点E作AB的平行线.证明:如图所示,过点E作EF∥AB,则有∠B+∠BEF=180°(两直线平行,同旁内角互补).又∵AB∥CD(已知),∴EF∥CD(如果两条直线都和第三条直线平行,那么这两条直线也互相平行),∴∠FED+∠D=180°(两直线平行,同旁内角互补).∴∠B+∠BEF+∠FED+∠D=180°+180°(等式的性质),即∠B+∠BED+∠D=360°.方法总结:过一点作一条直线或线段的平行线是我们常作的辅助线.
方法总结:题中未给出图形,作高构造直角三角形时,易漏掉钝角三角形的情况.如在本例题中,易只考虑高AD在△ABC内的情形,忽视高AD在△ABC外的情形.探究点二:利用勾股定理求面积如图,以Rt△ABC的三边长为斜边分别向外作等腰直角三角形.若斜边AB=3,则图中△ABE的面积为________,阴影部分的面积为________.解析:因为AE=BE,所以S△ABE=12AE·BE=12AE2.又因为AE2+BE2=AB2,所以2AE2=AB2,所以S△ABE=14AB2=14×32=94;同理可得S△AHC+S△BCF=14AC2+14BC2.又因为AC2+BC2=AB2,所以阴影部分的面积为14AB2+14AB2=12AB2=12×32=92.故填94、92.方法总结:求解与直角三角形三边有关的图形面积时,要结合图形想办法把图形的面积与直角三角形三边的平方联系起来,再利用勾股定理找到图形面积之间的等量关系.
意图:(1)介绍与勾股定理有关的历史,激发学生的爱国热情;(2)学生加强了对数学史的了解,培养学习数学的兴趣;(3)通过让部分学生搜集材料,展示材料,既让学生得到充分的锻炼,同时也活跃了课堂气氛.效果:学生热情高涨,对勾股定理的历史充满了浓厚的兴趣,同时也为中国古代数学的成就感到自豪.也有同学提出:当代中国数学成就不够强,还应发奋努力.有同学能意识这一点,这让我喜出望外.第六环节: 回顾反思 提炼升华内容:教师提问:通过这节课的学习,你有什么样的收获?师生共同畅谈收获.目的:(1)归纳出本节课的知识要点,数形结合的思想方法;(2)教师了解学生对本节课的感受并进行总结;(3)培养学生的归纳概括能力.效果:由于这节课自始至终都注意了调动学生学习的积极性,所以学生谈的收获很多,包括利用拼图验证勾股定理中蕴含的数形结合思想,学生对勾股定理的历史的感悟及对勾股定理应用的认识等等.
8.一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0)则光线从A点到B点经过的路线长是( )A.4 B.5 C.6 D.7第四环节课堂小结1、关于y轴对称的两个图形上点的坐标特征:(x , y)——(- x , y)2、关于x轴对称的两个图形上点的坐标特征:(x , y)——(x , - y)3、关于原点对称的两个图形上点的坐标特征:(x , y)——(- x , -y)第五环节布置作业习题3.5 1,2,3四、 教学反思通过“坐标与轴对称”,经历图形坐标变化与图形的轴对称之间的关系的探索过程, 掌握空间与图形的基础知识和基本技能,丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维,激发学生对数学学习的好奇心与求知欲,学生能积极参与数学学习活动;积极交流合作,体验数学活动充满着探索与创造。教学中务必给学生创造自主学习与合作交流的机会,留给学生充足的动手机会和思考空间,教师不要急于下结论。事先一定要准备好坐标纸等,提高课堂效率。
解析:从各点的位置可以发现A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),A6(2,2),A7(-2,2),A8(-2,-2),A9(3,-2),A10(3,3),A11(-3,3),A12(-3,-3),….仔细观察每四个点的横、纵坐标,发现存在着一定规律性.因为2015=503×4+3,所以点A2015在第二象限,纵坐标和横坐标互为相反数,所以A2015的坐标为(-504,504).故填(-504,504).方法总结:解决此类题常用的方法是通过对几种特殊情况的研究,归纳总结出一般规律,再根据一般规律探究特殊情况.三、板书设计轴对称与坐标变化关于坐标轴对称作图——轴对称变换通过本课时的学习,学生经历图形坐标变化与图形的轴对称之间的关系的探索过程,掌握空间与图形的基础知识和基本作图技能,丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维,激发数学学习的好奇心与求知欲.教学过程中学生能积极参与数学学习活动,积极交流合作,体验数学活动的乐趣.
2. 内容内在逻辑本课由引言和三框内容组成。引言首先指出道德是社会关系的基石,是人际和谐的基础,说明本课与单元主题之间的关 联 。随后,点出本课的三个主题:尊重他人、以礼待人、诚实守信。第一框“尊重他人”,用学生常见的两个场景引导体验,导入新课 。学生在理解尊重含义的 同时,懂得尊重对个人和社会的价值和意义,懂得尊重的复杂性;进而引导学生学会如何在实 际生活做到尊重他人。第二框“以礼待人”,引导学生探讨文明有礼对个人和社会的意义,再扩展至“礼仪之邦”的 国家形象,懂得参加各种仪式体现了民族的尊严和国家的形象。第三框“诚实守信”,首先使学生明白诚信是一种道德规范,也是社会主义核心价值观在公 民个人层面的一个价值准则,在学生体会和认识到诚信对个人、社会等重要影响的基础上,引 导学生不断增强诚信意识,积极参加诚信建设。
2. 内容内在逻辑第八课《国家利益至上》设计了“国家好,大家才会好”“坚持国家利益至 上”两框内容,其立意在于帮助学生认识维护国家利益的重要性,正确认识国家 利益与人民利益的关系,提高维护国家利益的意识,树立正确的国家利益管,提 高辨析各种爱国观念和行为的能力,使自己的爱国情感更加理性、深沉。第九课《树立总体国家安全观》设计了“认识总体国家安全观”和“维护国 家安全”两框。 目的在于引导学生正确理解和全面把握我国安全形势面临的挑战 ,从小树立总体国家安全观, 自觉担负起维护国家安全的责任。第十课《建设美好祖国》设计了“关心国家发展”“天下兴亡,匹夫有责” 两框内容,其目的和意图在于帮助学生全面认识国家发展,从初中学生的角度认 识祖国发展,正视国家发展过程中的问题,理解自己与国家发展的密切关联,让 学生在关心祖国发展的同时,为将来投身于国家建设奠定认识基础。
5. 当今世界,日新月异的互联网不仅促进了社会生产力的新变革,而且创造 了人类生活新空间。下列属于网络推动社会进步的表现的是( )① 网络让我们日常生活中的信息传递和交流变得方便迅捷② 网络为经济发展注入新的活力,推动传统产业转型升级③ 网络丰富民主形式,促进民主政治进步④ 网络为文化传播和科技创新搭建新平台A.①③④ B.②③④ C.①②④ D.①②③④二、非选择题?6. “互联网"让浙江农业有了别样面貌。信息经济在浙江腾飞, 赋予了这片土地上的农民格外活跃的互联网思维。他们开网店卖农产 品,红红火火。浙江的“互联网+”农业还远不止把农产品搬到网上。 越来越多的农民在土地上播撒下互联网种子,捕捞那跳跃的数字,用 它指导生产、提高亩产。互联网让农民有了不一样的面貌,更让现代 农业有了全新的模样。(1) 互联网对经济发展起到了怎样的促进作用?(2) 互联网的快速发展还在哪些方面产生了影响?
情景一 :小明发现利用手机不仅可以查阅资料 、学习新知 、广交朋友, 还可以聊微信 、 刷抖音 、 玩游戏 。 小明感叹: 一机在手 , 天 下我有!情景二: 在使用过程中 , 小明还发现 , 广告插件无处不在 , 明星八卦 扑面而来 , 各种信息真假难辨 。 游曳在五光十色的网海里 , 小 明 经 常 旷 课 , 成 绩 不 断 下 滑 , 越 来 越 不 愿 与 人 打 交 道 , 经 常宅在家里 ,沉迷游戏 ,最后还因为在网络上诈骗而被拘留。小明再一次感叹: 一机在手 , 毁我所有!请你根据情景,结合所学 内容 , 回答下列问题:(1)两 则材料共 同说 明了什 么? 请谈谈你对 “ 一机在手 , 毁我所有 ” 的理解 。 (6 分)(2)对 比两则材料 , 你 能得 到 哪些启示? (三个方面 即可 ) (6 分)【心系社会 公益有我】12. ( 18 分 ) “海 阔凭鱼跃 ,天 高任鸟飞 。 ”置 身于前所未有 的广 阔天地, 我们要主动融入绚丽多彩的社会生活 ,树立积极的生活态度 ,学会互 助关爱 、合作共享 ,承担起我们作为社会成 员的 责任 。某校八 (1) 班 同学在团支部带领下,开展了以“心系社会 · 公益有我”为主题的探究性学 习活动,请你参与并完成下列任务。
(一) 单元质量检测内容一、单项选择题1.2021 年实施的《中华人民共和国民法典》第 183 条规定:“因保护他人民事权益使自己受到损害的, 由侵权人承担民事责任, 受益人可以给予适当补偿。没有 侵权人、侵权人逃逸或者无力承担民事责任, 受害人请求补偿的, 受益人应当给予 适当补偿。”这样的规定,有助于( )①弘扬真善美的行为 ②培养人们的亲社会行为③依法维护见义勇为者的合法权益 ④使身处危难之中的人们得到及时救助 A.①② B.②③④ C.①③④ D.①②③④ 2.宣城市宣州区疫情防控应急指挥部 7 月 26 日下午发布信息:7 月 26 日上午,一网友在名称为“宣城的士之声交流群”的微信聊天群中散布消息, 称宣城有一人 核酸检测呈阳性。经核查, 此为不实信息, 属于谣言, 公安机关已介入调查, 请广 大群众及时关注政府官方公告、信息, 以官方发布消息为准, 不造谣、不传谣、不 信谣。对此,网民应该( )①严厉打击制造、传播谣言的行为,让谣言止于智者②塑造批判性思维,对信息进行甄别,抵制不良信息③提高网络媒介素养,自觉践行社会主义核心价值观
本节课开始时,首先由一个要在一块长方形木板上截出两块面积不等的正方形,引导学生得出两个二次根式求和的运算。从而提出问题:如何进行二次根式的加减运算?这样通过问题指向本课研究的重点,激发学生的学习兴趣和强烈的求知欲望。本节课是二次根式加减法,目的是探索二次根式加减法运算法则,在设计本课时教案时,着重从以下几点考虑:1.先通过对实际问题的解决来引入二次根式的加减运算,再由学生自主讨论并总结二次根式的加减运算法则。2.四人小组探索、发现、解决问题,培养学生用数学方法解决实际问题的能力。3.对法则的教学与整式的加减比较学习。在理解、掌握和运用二次根式的加减法运算法则的学习过程中,渗透了分析、概括、类比等数学思想方法,提高学生的思维品质和兴趣。
1.关于二次根式的概念,要注意以下几点:(1)从形式上看,二次根式是以根号“ ”表示的代数式,这里的开方运算是最后一步运算。如 , 等不是二次根式,而是含有二次根式的代数式或二次根式的运算;(2)当一个二次根式前面乘有一个有理数或有理式(整式或分式)时,虽然最后运算不是开方而是乘法,但为了方便起见,我们把它看作一个整体仍叫做二次根式,而前面与其相乘的有理数或有理式就叫做二次根式的系数;(3)二次根式的被开方数,可以是某个确定的非负实数,也可以是某个代数式表示的数,但其中所含字母的取值必须使得该代数式的值为非负实数;(4)像“ , ”等虽然可以进行开方运算,但它们仍属于二次根式。2.二次根式的主要性质(1) ; (2) ; (3) ;(4)积的算术平方根的性质: ;(5)商的算术平方根的性质: ;