问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图
问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,
二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为
1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.
二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.
二、探究新知一、点到直线的距离、两条平行直线之间的距离1.点到直线的距离已知直线l的单位方向向量为μ,A是直线l上的定点,P是直线l外一点.设(AP) ?=a,则向量(AP) ?在直线l上的投影向量(AQ) ?=(a·μ)μ.点P到直线l的距离为PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.两条平行直线之间的距离求两条平行直线l,m之间的距离,可在其中一条直线l上任取一点P,则两条平行直线间的距离就等于点P到直线m的距离.点睛:点到直线的距离,即点到直线的垂线段的长度,由于直线与直线外一点确定一个平面,所以空间点到直线的距离问题可转化为空间某一个平面内点到直线的距离问题.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是C1C,D1A1的中点,则点A到直线EF的距离为 . 答案: √174/6解析:如图,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.
跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.
教学过程:一、导入1、问题导入。师:猜猜这位大师是谁?【课件】生:回答。2、了解乐曲作曲家及相关知识。师:李斯特是著名的匈牙利作曲家。少年时期他随父母去了巴黎,成名以后回到祖国,广泛收集匈牙利民歌和吉普赛音乐,写下了19首在其创作中占有重要地位的匈牙利狂想曲。这些音乐具有匈牙利吉普赛人的热情,是匈牙利民族音乐的杰出作品,其中尤以第二号匈牙利狂想曲最为著名。二、学习歌曲师:这首狂想曲以匈牙利民间舞曲查尔达什体裁写成,分成庄重慢板和奔放急板两大部分。乐曲前半部分在滞缓的节奏衬托下,低沉压抑的旋律蕴含了巨大的悲愤,表现了匈牙利人不屈的性格。尤其是引子部分,在这一段中,右手是弹奏长音,左手是弹奏带装饰音的八分音符;大小和弦交替进行,声音不适宜太长,太长了显得松弛,要具有力度和爆发感。(接着乐曲在高音区反复并转入舞曲风格的轻快曲调,富有动力性。第二部分乐曲的速度加快,先奏出舞曲的主题,然后力度再逐渐增加,速度越来越快;接着涌现了一个个富有个性的主题,音乐的高潮此起彼伏,如旋风般旋转的舞曲在狂热的高潮中结束。)
我在教学《跳短绳》一课,采用传授式教学法、学生创新方法、学生反复练习、分组比赛等方法来完成教学任务。目前,在教法上我改用激趣法和鼓励法进行教学尝试,取得了较好的效果。课前,激发学生模仿小兔、袋鼠等动物跳,然后,布置小动物学跳绳,比一比谁学得快的任务,让学生自由练习。练习过程中,一些基础好的学生很快就完成老师布置的任务,为了保持学生的练习兴趣,一方面,引导学生学习花样跳绳,一方面,让学生当小老师教不会的同学,每当发现学生微小的进步,我都会不失时机地给予表扬,有时作出惊呀的表情,有时有意输给学生,在我的激发和鼓励下,学生对跳绳充满了兴趣,不仅体育课上跳,回家跳,课间十分钟也在跳,学生只要一见到我,就拿着跳绳跑到我跟前,让我数数,面对学生的进步,我深感成功的快乐。
我在教学《跳短绳》一课,采用传授式教学法、学生创新方法、学生反复练习、分组比赛等方法来完成教学任务。目前,在教法上我改用激趣法和鼓励法进行教学尝试,取得了较好的效果。课前,激发学生模仿小兔、袋鼠等动物跳,然后,布置小动物学跳绳,比一比谁学得快的任务,让学生自由练习。练习过程中,一些基础好的学生很快就完成老师布置的任务,为了保持学生的练习兴趣,一方面,引导学生学习花样跳绳,一方面,让学生当小老师教不会的同学,每当发现学生微小的进步,我都会不失时机地给予表扬,有时作出惊呀的表情,有时有意输给学生,在我的激发和鼓励下,学生对跳绳充满了兴趣,不仅体育课上跳,回家跳,课间十分钟也在跳,学生只要一见到我,就拿着跳绳跑到我跟前,让我数数,面对学生的进步,我深感成功的快乐。
一、 创设情境,激发学生学音乐的兴趣。 对于低年级同学来说,他们好动、注意力极易分散,但我抓住小同学爱听故事,善表现的特点,我采取讲故事引入课文内容,学会歌唱后,再指导他们根据词中内容来表演。课堂上,让学生上台演唱,培养他们的参与、实践能力,学生情绪高涨,使音乐课上得更加生动活跃。这时同学们的热情高涨,慢慢喜欢上音乐课。这样,每次上音乐课他们都会有一种期待,当然我也会不失时机地将教学音乐基本知识、节奏、歌曲处理(比如以什么情绪来唱好他)等讲授给学生,在一定程度上和学生取得配合,收到了一些效果,教了不少儿童歌曲,为丰富儿童的音乐世界起到了一定的作用。通过丰富多彩的音乐教学形式,激发学生学习音乐的兴趣和爱好,活跃空气,在紧张的文化课学习之余可调节情绪,有利于其他课的学习。
1.认真做好本期开学工作。本期共有7个班的应用数学教学工作,全部为资源系的课,为确保全期教学工作科学合理,期初将集中精力备课,制定好各个班的教学计划及教学进度,保证顺利完成教学任务。 2.认真配合系部、教务处做好开学后补考工作。 3.研究学情,因材施教,确保教学质量。因为绝大多数学生数学基础薄弱,学习习惯及学习自觉性欠佳。因此,教学过程中,应着重加强学生学法指导及学习能力的培养,在新知识传授过程中根据学生知识基础有针对性地补充旧知识的复习准备,做到因材施教。认真做好备课、课堂、作业三个重点环节的工作,确保教学效果。
一、 创设情境,激发学生学音乐的兴趣。 对于低年级同学来说,他们好动、注意力极易分散,但我抓住小同学爱听故事,善表现的特点,我采取讲故事引入课文内容,学会歌唱后,再指导他们根据词中内容来表演。课堂上,让学生上台演唱,培养他们的参与、实践能力,学生情绪高涨,使音乐课上得更加生动活跃。这时同学们的热情高涨,慢慢喜欢上音乐课。这样,每次上音乐课他们都会有一种期待,当然我也会不失时机地将教学音乐基本知识、节奏、歌曲处理(比如以什么情绪来唱好他)等讲授给学生,在一定程度上和学生取得配合,收到了一些效果,教了不少儿童歌曲,为丰富儿童的音乐世界起到了一定的作用。通过丰富多彩的音乐教学形式,激发学生学习音乐的兴趣和爱好,活跃空气,在紧张的文化课学习之余可调节情绪,有利于其他课的学习。
活动目标: 1、鼓励幼儿探索学习,使幼儿认清安全标志,教育幼儿不要玩火、电等危险物品,遵守交通规则。 2、引导幼儿发现尝试,让幼儿知道应该按照安全标志的要求行动,才能既方便自己又不影响集体,培养自我保护意识和能力。 3、通过幼儿自己动手制作安全标志,发展幼儿的想象力和创造力及动手制作的能力。 活动准备: 1、多媒体课件:交通安全、严禁烟火、当心触电、禁止触摸等内容的小故事,并配有关的安全标志。 2、事先让幼儿收集有关的安全标志。 3、每幼儿一套安全标志七种:注意安全、人行横道、步行、禁止通行、严禁烟火、当心触电、禁止触摸。 4、画纸、水彩笔、剪刀等工具材料。
活动目标: 1、了解基本的交通规则,认识几种常见的交通标志,了解交通安全标志与人们生活的密切关系。 2、学习基本的指挥手势,懂得手势的意思。 3、在游戏活动中体验交通规则的重要性,养成自觉遵守交通规则的意识,提高自我安全防护能力。 活动准备: 物质: 1、制作介绍常见交通安全标志的课件。 2、组织幼儿自带小自行车、书包,自制方向盘。 3、将场地布置成马路十字路口的样子,停车场标志、自行车标志。 4、与交警联系好,邀请前来讲解。 5、音乐磁带,多媒体设备(搜索flash动画)。 心理:观察马路上的交通标志。
二 活动目标 1、鼓励幼儿在生活中做一个善于观察的有心人 2、进一步培养幼儿的语言表达能力,观察能力和判断的能力 3、帮助幼儿认识生活中的一些常见的标志,主要认识:当心触电 当心中毒 禁止烟火 4、懂得基本的安全知识 知道发生火灾以后简单的自救方法,提高 自我保护意识 三 活动准备 1、多媒体课件一套 2、安全标志图片一套 3、挂图四幅 4、布置好“安全图片展览”
2、寻找教室里的不安全因素,并贴上标记提醒同伴。 活动准备: 1、小朋友户外活动的图片 2、红色标记 活动过程: 1、出示幼儿户外活动时的图片 提问:图上有谁?他们在玩什么?你觉得他们这样玩好吗?也许会发生什么事? (会摔跤、会打痛、会从玩具架上掉下来等等) 那你觉得应该怎么玩,小朋友才不会发生这样的事呢?(引导幼儿大胆交流)
活动过程: 一、 激发幼儿参与竞赛的兴趣并交代规则 我知道我们班的小朋友最喜欢看“十万个为什么”擂台赛和“财富大考场”的节目,今天我们也来开展一次安全知识大奖赛,好吗?(好)现在我们以小组为一队,分成红、黄、蓝、绿、紫、粉红队进行比赛,问题出现后等老师说开始才能抢答,答对一题得10分,答错或违反规则要倒扣10分,最后看积分高低产生冠、亚、季军队,(出示金、银、铜牌)并发奖牌。 二、 安全知识大奖赛: 1、 认识安全标志(抢答) (1) 看屏幕复习巩固认识过的安全标志 (2) 介绍两个新标志