(3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。(4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。(6)引导学生观察:A、从0起往右依次是?从0起往左依次是?你发现什么规律?B、在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到.5和-1.5处,应如何运动?(7)练习:做一做的第1、2题。(二)教学例4:1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。
教学目标:1、会用多得多、少得多、多一些、少一些等词语形象地描述两个100以内的数之间的大小关系,培养学生的数感和语言表达能力。2、在观察、比较的过程中,逐步发展估计意识和简单的推理能力。3、在观察、操作、讨论、交流的小组式的学习过程中激发学生的学习兴趣,培养合作意识和主动探求知识的能力,从而感知数学无处不在。教学重点:理解多一些、多得多、少一些、少得多的相对性含义,并能够用准确地语言进行表述。教学难点:相对性的理解并能进行正确地表述。教学过程:一、复习旧知。在O里填上>、<或=。63O7558O5898O10056O65先填空再说出比较方法。(复习旧知。)
大家请看,钟面上现在表示的是几时?(下午1时)下午1时我们还可以怎样表示?(13时)下午1时就是13时,你是怎么想到用13时表示的?在一日内,由于第一圈走了12小时,所以时针在走第二圈时,我们就要把时针指的钟面上的时刻数分别加上12,这就是我们今天要学习的24时记时法。比如,现在钟面上是下午1时,根据24时记时法就应该是?(13时)。那么下午2时、3时、6时、晚上7时30分、9时50分用24时计时法怎样表示?你是怎样想的?(继续看画面。)这时,同学们又开始了下午的学习生活。16时,同学们结束了一天的学习,回到了家中。时间一晃就到了21时,也就是我们常说的夜间九点。这时我们又该上床休息了。时间一分一秒地过去了,又是午夜12点,夜深人静,一天又过去了。这种用0时到24时来表示一天时间的记时方法我们就把它叫做24时记时法。师小结:同学们,一天的时间很快就会过去,我们要珍惜时间,合理地安排好一天的作息时间。4、观察钟面:你发现了什么?(同一指针可以表示晚上12时、0时、24时。)抽几个时间板书。观察普通计时法和24时计时法,发现他们有什么区别呢?同桌之间互相交流一下。
一、回顾旧知,复习铺垫1、上节课我们学习了一些比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?应用比例的基本性质可以做什么?2、判断下面每组中的两个比是否能组成比例?为什么?6:3和8:4 : 和 :3、这节课我们继续学习有关比例的知识,学习解比例。(板书课题)二、引导探索,学习新知1、什么叫解比例?我们知道比例共有四项,如果知道其中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。解比例要根据比例的基本性质来解。2、教学例2。(1)把未知项设为X。解:设这座模型的高是X米。(2)根据比例的意义列出比例:X:320=1:10(3)让学生指出这个比例的外项、内项,并说明知道哪三项,求哪一项。根据比例的基本性质可以把它变成什么形式?3x=8×15。这变成了什么?(方程。)教师说明:这样解比例就变成解方程了,利用以前学过的解方程的方法就可以求出未知数X的值。
(二)合作交流,探究新知出示例题。(小黑板)先全班同学读题,教师在解释说明题目中“存定期一年”表示什么意思。一般来说,存款主要分为定期、活期等储蓄方式。所谓活期存款是指储户可以随时提取的一种方式;定期存款是有一定期限的一种存款方式,定期存款又分为整存整取和零存整取等形式。现在银行的定期存款有三个月、六个月、一年、二年、三年、五年的等等。(让学生在议一议、说一说的基础上,说出自己是怎样想的,交流归纳对问题的认识,理解存款的定期、活期的年月限即时间,以及存款方式。)小丽存的是“定期一年”,即小丽在银行存的100元在一般情况下要在银行存一年,如果有特殊情况也可以提前提取。下面请同学们合作交流,思考如下几个问题。(出示投影片。)(1)你猜一猜,小丽把100元存入银行叫做什么?(本金)(2)你估算一下,小丽把100元存入银行,定期一年,全部取出,取出的钱会大于100元吗?为什么?
探究新知问题1:已知100件产品中有8件次品,现从中采用有放回方式随机抽取4件.设抽取的4件产品中次品数为X,求随机变量X的分布列.(1):采用有放回抽样,随机变量X服从二项分布吗?采用有放回抽样,则每次抽到次品的概率为0.08,且各次抽样的结果相互独立,此时X服从二项分布,即X~B(4,0.08).(2):如果采用不放回抽样,抽取的4件产品中次品数X服从二项分布吗?若不服从,那么X的分布列是什么?不服从,根据古典概型求X的分布列.解:从100件产品中任取4件有 C_100^4 种不同的取法,从100件产品中任取4件,次品数X可能取0,1,2,3,4.恰有k件次品的取法有C_8^k C_92^(4-k)种.一般地,假设一批产品共有N件,其中有M件次品.从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为P(X=k)=CkM Cn-kN-M CnN ,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M},则称随机变量X服从超几何分布.
(2)方法一:第一次取到一件不合格品,还剩下99件产品,其中有4件不合格品,95件合格品,于是第二次又取到不合格品的概率为4/99,由于这是一个条件概率,所以P(B|A)=4/99.方法二:根据条件概率的定义,先求出事件A,B同时发生的概率P(AB)=(C_5^2)/(C_100^2 )=1/495,所以P(B|A)=(P"(" AB")" )/(P"(" A")" )=(1/495)/(5/100)=4/99.6.在某次考试中,要从20道题中随机地抽出6道题,若考生至少答对其中的4道题即可通过;若至少答对其中5道题就获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.解:设事件A为“该考生6道题全答对”,事件B为“该考生答对了其中5道题而另一道答错”,事件C为“该考生答对了其中4道题而另2道题答错”,事件D为“该考生在这次考试中通过”,事件E为“该考生在这次考试中获得优秀”,则A,B,C两两互斥,且D=A∪B∪C,E=A∪B,由古典概型的概率公式及加法公式可知P(D)=P(A∪B∪C)=P(A)+P(B)+P(C)=(C_10^6)/(C_20^6 )+(C_10^5 C_10^1)/(C_20^6 )+(C_10^4 C_10^2)/(C_20^6 )=(12" " 180)/(C_20^6 ),P(E|D)=P(A∪B|D)=P(A|D)+P(B|D)=(P"(" A")" )/(P"(" D")" )+(P"(" B")" )/(P"(" D")" )=(210/(C_20^6 ))/((12" " 180)/(C_20^6 ))+((2" " 520)/(C_20^6 ))/((12" " 180)/(C_20^6 ))=13/58,即所求概率为13/58.
3.某县农民月均收入服从N(500,202)的正态分布,则此县农民月均收入在500元到520元间人数的百分比约为 . 解析:因为月收入服从正态分布N(500,202),所以μ=500,σ=20,μ-σ=480,μ+σ=520.所以月均收入在[480,520]范围内的概率为0.683.由图像的对称性可知,此县农民月均收入在500到520元间人数的百分比约为34.15%.答案:34.15%4.某种零件的尺寸ξ(单位:cm)服从正态分布N(3,12),则不属于区间[1,5]这个尺寸范围的零件数约占总数的 . 解析:零件尺寸属于区间[μ-2σ,μ+2σ],即零件尺寸在[1,5]内取值的概率约为95.4%,故零件尺寸不属于区间[1,5]内的概率为1-95.4%=4.6%.答案:4.6%5. 设在一次数学考试中,某班学生的分数X~N(110,202),且知试卷满分150分,这个班的学生共54人,求这个班在这次数学考试中及格(即90分及90分以上)的人数和130分以上的人数.解:μ=110,σ=20,P(X≥90)=P(X-110≥-20)=P(X-μ≥-σ),∵P(X-μσ)≈2P(X-μ130)=P(X-110>20)=P(X-μ>σ),∴P(X-μσ)≈0.683+2P(X-μ>σ)=1,∴P(X-μ>σ)=0.158 5,即P(X>130)=0.158 5.∴54×0.158 5≈9(人),即130分以上的人数约为9人.
一、教材分析《认识钟表》是义务教育课程标准实验教科书数学(人教版)一年级上册第七单元的教学内容。本节课要求学生对整时的认识,是学生建立时间观念的初次尝试,为以后“时、分”的教学奠定基础。二、学生分析一年级的学生由于年龄小,刚入学不久,好动、好奇、好玩。大部分学生在学前教育或家庭教育中多多少少都接受过一些关于时间的知识。一般来说,一名6岁的儿童每天起床、吃饭、上课、下课都要按照一定的时间来进行,这样在生活中潜移默化就感知到了时间这一抽象概念的存在。而且几乎每个家庭都有挂钟或手表,钟面、表面对于学生来说并不陌生。三、教学目标 1.初步认识钟面和电子表面,能结合自己的生活经验正确地读、写整时时刻,初步建立时间观念。 2.经历操作、讨论、交流等实践活动,进一步培养学生的动手、动口、动脑的实践应用能力和合作精神,发展数感。
教学目标:1.能选择不同的标准对同一类物品进行不同的分类,掌握分类的方法。2.初步感知不同标准分类的意义,体验分类结果在不同标准下的多样性。3.培养学生思维的灵活性和发散性,养成良好的学习、生活习惯。4.培养学生的操作能力、观察能力、判断能力、语言表达能力和合作交流的意识。5.让学生体会到生活中处处有数学,学会用学到的知识解决生活中的实际问题。教学重、难点:重点:选择不同标准分类难点:思维的发散性 关键:在直观中拓展思维的时空教学准备:铅笔、实物卡片、学具袋(各种形状、颜色各异的物品)教学过程:一、观察分析 多重分类1.师出示如书本P39页的铅笔。(1)观察这些铅笔有什么不同?并把它们分分类。(2)四人一小组交流、讨论可以怎么分类?是按什么分的?比比哪一组的分法最多。
一、说教材倍的认识是在学生认识和理解乘法意义的基础上学习的,学生将通过对已学习的有关乘法的知识进行迁移获得“倍”的概念。“倍”是一个新的概念,是一种数量之间的关系。通过对本内容的学习,初步建立倍的概念和简单的数学模型,有助于学生深入理解乘法的含义,拓宽应用乘法解决实际问题的范围与能力,培养数感,为今后学习分数、小数和百分数等相关知识奠定基础。二、说教学目标根据教材的特点和学生的实际情况,我预设目标如下:1、在充分感知的基础上,理解一个数是另一个数几倍的含义,初步建立倍的概念。2、通过动手操作,培养几何直观。3、使学生初步体会数学知识与日常生活的联系,培养学生观察、操作、分析及语言表达的能力,养成良好的学习习惯。三、说教学重难点:教学重点:理解一个数是另一个数几倍的含义,初步建立倍的概念。突破方法:通过反复的学具操作活动,让学生去观察、经历、体验和探索,在亲身感受中建立“倍”的概念。
一、说教材1、教学内容:本课内容选自2013人教版小学数学二年级上册第一单元《长度单位》例1、例2、例3的教学内容。 2、教材所处的地位和作用本课是在学生已经对长短的概念有了初步的认识,并学会直观比较一些物体长短的基础上来学习一些计量长度的知识,这些知识可以帮助学生认识长度单位,初步建立1厘米的长度观念。 3、学情分析二年级学生经过一年的学习,已经认识了100以内的数,学会了一些简单的统计方法。这些知识储备为我们进一步学习新知识打下基础。二、说教学目标1、知识与技能目标:统一长度单位,建立1厘米的观念,会用厘米测量。2、情感目标:在小组合作测量的过程中,培养学生乐于探究的学习态度,学会与他人合作。体验知识的形成过程,进一步体验学习成功带来的喜悦。
[教材分析]本课时是《克和千克》这一单元的第一节课,主要介绍一些普通生活用品的重量认识质量单位克和千克,培养学生用数学观点发现克和千克两个质量单位,为进一步学习有关克和千克之间的联系做好准备。[学情分析]对于活泼好动的二年级孩子来说,物体的重量他们有一定的生活体验,同时,二年级学生形象思维能力较强,可以利用他们对身边物体质量来认识克和千克。有了以上的认识,我将本节课的教学目标拟定为:[目标定位]1、知识目标:让学生在生动活泼的情境中初步认识克和千克,建立克和千克的观念,知道1000克=1千克2、能力目标:培养学生初步的观察、操作能力,让学生学会看秤培养动手能力。3、情感目标:培养学生自主探索的精神和增强生活意识。教学重难点:通过活动正确认识克和千克的关系,知道1克和1千克的关系,难点建立克和千克的意识。
尊敬的各位评委,各位老师:大家好!我说课的内容是人教版小学数学三年级上册第三单元第2节《千米的认识》。它是在学生学习了米、分米、厘米、毫米等长度单位的基础上进行教学的。“千米”不像厘米、分米那样看得见、画得出,所以学生对“千米”的感知相对较少,这就为学生认识“千米”带来了困难。紧密联系学生的生活,灵活运用教材,是解决这一困难的有效途径。根据上述内容的分析,我确定了如下教学目标:1、使学生初步认识长度单位“千米”,建立1千米长度观念,知道1千米=1000米。2、体验1千米的实际长度,培养学生的观察能力、实践能力,发展学生的空间想象能力。3、感受数学与日常生活的紧密联系,在与同伴交流中体验学习数学的愉悦心情。其中,使学生建立1千米的长度观念,体验1千米的实际长度是本课教学的重难点。
二、说学情:?学生是学习活动的主体。小学四年级的学生在以前的学习中,已经对数据的统计过程有所体验,也学会了一些简单的收集、整理和描述数据的方法,还能根据统计结果回答一些简单的问题,具有初步的统计意识和能力。另外四年级的学生思维比较活跃,喜欢探究发现学习,接受知识的能力也较强,而且也掌握了一定的数学学习方法及策略。这些都是我在教学中可以利用的资源。?纵观学生的知识基础及对教材的剖析,我确立了该课的教学目标以及教学重点和难点。?三、教学目标:?1、使学生充分感受条形统计图的特点,知道条形统计图的意义和用途?2、使学生与老师一起经历条形统计图的制作过程,了解制作条形统计图的一般步骤,初步学会制作条形统计图,并能解决简单的实际问题
第二环节:探究新知。本环节我设计了以下几个教学活动。活动一:让学生尝试说哪些是轴对称图形,并点名让学生动手对折,继而在学生总结时给出轴对称的定义。活动二:让学生动手尝试画对称轴后,自己动手在书本上画,在察看学生完成情况时及时纠正。活动三:出示两幅表格上的图让学生判别轴对称图形后,让学生尝试在表格上画出轴对称图形另一半后,进行步骤总结。[本环节的设计意图是:《数学课程标准》指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者”。根据这一教学理念,在本环节中,我前后组织学生进行了几次自主探究活动,让学生在保持高度学习热情和探究欲望的活动过程中,始终以愉悦的心情,亲身经历和体验知识的形成过程。培养学生的探究能力、分析思维能力,激发他们的创新意识、参与意识;让学生在体验成功的同时也掌握和体会数学的学习方法。让学生在探究活动中,实现自主体验,获得自主发展。]
(一)本单元教材分析和学情负数是小学阶段数学教学新增加的内容。很久以来,负数的教学一般安排在中学教学的起始阶段进行,现在考虑到负数在生活中的广泛应用,学生在日常生活中已经接触了一些负数,有了初步认识负数的基础,《标准》将其提前到小学阶段教学。认识负数,对于小学生来说是数概念的一次拓展。学生以往所认识的数——整数、分数、小数等都是算术范围之内的数,建立负数的概念则使学生认数的范围从算术的数拓展到有理数,从而丰富了小学生对数概念的认识。(二)本单元的教学目标根据以上教材分析和学情,我确定本单元的教学目标如下:1.在熟悉的生活情境中初步认识负数,能正确的读、写正数和负数,知道0既不是正数也不是负数。2.初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的密切联系。
一、说教材《打电话》是课标教材中全新的“实践与综合应用”领域的一个知识点,是第二学段的12个“综合应用”的知识之一。教材通过学生生活中熟悉的素材:合唱队在假期接到一个紧急任务,老师要打电话尽快通知到每个队员,让学生帮助设计一个打电话方案,并从中寻找最优的方案。学生在解决问题的过程中进一步体会数学与生活的密切联系,以及优化思想在生活中的应用,培养学生应用数学知识解实际问题的能力。基于以上认识,结合本班学生的实际,我确定以下教学目标:1、[知识与技能]:通过动手操作、画图、模拟等方式,发现事物隐含的规律,体验优化的思想;2、[过程与方法]:使学生亲身经历寻找最优方案的全过程,经历独立思考和合作探究的学习方式; 3、[情感、态度与价值观]:初步体会运筹思想在实际生活中的应用以及对策论方法在解决问题中的应用,培养学生归纳推理的能力。
一、 说教材1、教材内容:人教版小学数学第十册《解简易方程》及练习二十六1~5题。2、教材简析:本节课是在学生已经学过用字母表示数和数量关系,掌握了求未知数x的方法的基础上学习的。通过学习使学生理解方程的意义、方程的解和解方程等概念,掌握方程与等式之间的关系,掌握解方程的一般步骤,为今后学习列方程解应用题解决实际问题打下基础。3、教学目标:(1)使学生理解方程的意义、方程的解和解方程的概念,掌握方程与等式之间的关系。(2)掌握解方程的一般步骤,会解简单的方程,培养学生检验的习惯,提高计算能力。(3)结合教学,培养学生事实求是的学习态度,求真务实的科学精神,养成良好的学习习惯。渗透一一对应的数学思想。
二、教学目标分析新课标指出,教学目标应包括知识与技能,过程与方法,情感态度与价值观这三个方面,而这三个方面又是一个紧密联系的有机整体,学生学会知识与技能的过程同时成为学会学习,形成正确价值观的过程,这告诉我们,在教学中应以知识与技能为主线,渗透情感态度价值观,并把两者充分体现在过程与方法中。借此,我将三维目标进行整合,确定本节课的教学目标为:1、从操作活动中理解因数和倍数意义,掌握找一个数的因数和倍数的方法,会判断一个数是不是另一个数的因数或倍数。 2、培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义观点。 3、通过主动探究,合作交流,培养学生的合作意识、探索意识,以及热爱数学学习的情感。