提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

北师大版初中八年级数学上册定义与命题说课稿

  • 人教部编版道德与法制一年级下册大自然谢谢你

    接着,教师引导学生与大自然对话,说一说:“大自然,我想对你说……”。设计意图:提升学生对大自然的情感与认识,感恩自然,喜欢在大自然中活动。活动三:阅读绘本,感恩自然学生阅读教材第30页到33页的绘本《大自然的语言》,教师引导学生说一说,大自然不仅给我们物质的馈赠、精神的馈赠,还给我们带来智慧的启迪。(板书:感恩)设计意图:再次感受与大自然的共在的情感。环节三:课堂小结,内化提升学生谈一谈学习本节课的收获,教师相机引导。设计意图:梳理总结,体验收获与成功的喜悦,内化提升学生的认识与情感。环节四:回归生活,拓展延伸课后,请同学们走进自然,拥抱自然。设计意图:将课堂所学延伸到学生的日常生活中,有利于落实行为实践。

  • 初中历史与社会人教版九年级下册《地球一小时 活动》教材教案

    地球一小时(Earth Hour)是世界自然基金会(WWF)应对全球气候变化所提出的一项倡议,希望家庭及商界用户关上不必要的电灯及耗电产品一小时。来表明他们对应对气候变化行动的支持。过量二氧化碳排放导致的气候变化目前已经极大地威胁到地球上人类的生存。公众只有通过改变全球民众对于二氧化碳排放的态度,才能减轻这一威胁对世界造成的影响。地球一小时在3月的最后一个星期六20:30~21:30期间熄灯。活动由来:“地球1小时”也称“关灯一小时”,是世界自然基金会在2007年向全球发出的一项倡议:呼吁个人、社区、企业和政府在每年三月最后一个星期六20:30~21:30期间熄灯1小时,以此来激发人们对保护地球的责任感,以及对气候变化等环境问题的思考,表明对全球共同抵御气候变暖行动的支持。这是一项全球性的活动,世界自然基金会于2007年首次在悉尼倡导之后,以惊人的速度席卷全球,大家都来参加这个活动。[1] “地球1小时”活动首次于2007年3月31日在澳大利亚的悉尼展开,一下子吸引了超过220万悉尼家庭和企业参加;随后,该活动以惊人的速度迅速席卷全球。在2008年,WWF(中国)对外联络处透露,全球已经有超过80个国家、大约1000座城市加入活动。2013年,包括悉尼歌剧院、帝国大厦、东京塔、迪拜塔、白金汉宫在内的各国标志性建筑也在当地时间晚八点半熄灯一小时。[2] ,其中包括巴勒斯坦、法属圭亚那、加拉帕戈斯群岛、卢旺达、圣赫勒那岛、苏里南、突尼斯等首次参与“地球一小时”的国家和地区。在中国,北京鸟巢、水立方、世贸天阶等标志性建筑同时熄灯,同一时段,从上海东方明珠到武汉黄鹤楼,从台北101到香港天际100观景台,中国各地多个标志性建筑均熄灯一小时,全国共有127个城市加入“地球一小时”活动。

  • 人教版新课标高中物理必修1匀变速直线运动的位移与时间的关系说课稿2篇

    培养学生合作交流意识和探究问题的能力,这一部分知识层层递进,符合学生由特殊到一般、由简单到复杂的认知规律。4、互动探究(1)极限思想的渗透让学生阅读“思考与讨论”小版块.培养学生的自学和阅读能力提出下列问题,进行分组讨论:a、用课本上的方法估算位移,其结果比实际位移大还是小?为什么?b、为了提高估算的精确度,时间间隔小些好还是大些好?为什么?针对学生回答的多种可能性加以评价和进一步指导。让学生从讨论的结果中归纳得出:△t越小,对位移的估算就越精确。渗透极限的思想。通过小组内分工合作,讨论交流,培养学生交流合作的精神,以及搜集信息、处理信息的能力;通过小组间对比总结,使学生学会在对比中发现问题,在解决问题过程中提高个人能力;

  • 人教版新课标高中物理必修1匀变速直线运动的速度与时间的关系说课稿2篇

    设计意图:几道例题及练习题,其中例1小车由静止启动开始行驶,以加速度 做匀加速运动,求2s后的速度大小?进而变式到:小车遇到红灯刹车……,充分体现了“从生活到物理,从物理到社会”的物理教学理念;例题及练习题由浅入深、由易到难、各有侧重,体现新课标提出的让不同的学生在物理上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。(6) 小结归纳,拓展深化我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主题作用,从学习的知识、方法、体验是那个方面进行归纳,我设计了这么三个问题:① 通过本节课的学习,你学会了哪些知识;② 通过本节课的学习,你最大的体验是什么;③ 通过本节课的学习,你掌握了哪些学习物理的方法?

  • 人教版高中地理必修2第四章第一节工业的区位因素与区位选择说课稿

    在这段教学中可以插入世界主要铁矿、煤矿,以及我国主要的矿产基地、钢铁生产基地的相关内容,不失为区域地理知识的很好补充和巩固。那么从现状来看我国的钢铁产业基地多数污染较为严重,可见工业区位的选择同样要顾及到环境的因素,由此引入下一部分的内容。除了传统意义上的工业区位因素外,环境、政策以及决策者的理念和心理等日益受到人们的关注。在这段文字的处理上,只需进行概念、道理上的陈述即可,重点要放在污染工业在城市中的布局这一知识点上。首先要了解什么工业会造成怎样的污染,然后根据污染的类别分别讲解不同的应对方略,最后将配以适当的例题以期提高学生的整体把握程度和综合运用能力。最后将对本节内容进行小结,要在小结中阐述清楚本节课的两大内容:即工业的区位因素和工业区位的选择。然后点明本节课的主要知识点、难点、重点。在时间允许的情况下可以适当安排几道有关主导产业和城市工业布局的例题加以练习。

  • 人教版高中地理必修3区域工业化与城市化—以我国珠江三角洲地区为例说课稿

    A.城镇数量猛增B.城市规模不断扩大【设计意图】通过读图的对比分析,提高学生提取信息以及对比分析问题的能力,通过小组之间的讨论,培养合作能力。五、课堂小结和布置作业关于课堂小结,我打算让学生自己来总结,你这节课学到了什么。这样既可以提高学生的总结概括能力,也可以让我在第一时间内获得它们的学习反馈。(本节课主要学习了珠三角的位置和范围以及改革开放以来珠三角地区工业化和城市化的发展。)关于作业的布置,我打算采用分层次布置作业法。第一个层次的作业是基础作业,要求每一位同学都掌握,第二个层次的作业是弹性作业,学生可以根据自己的情况来选做。整个这堂课,老师只是作为一个引导者、组织者的角色,学生才是课堂上真正的主人,是自我意义的建构者和知识的生成者,被动的、复制式的课堂将离我们远去。

  • 大班数学教案:楼房与号码

    为了解决幼儿的实际问题和困难,我们以门牌号码为切入口,将幼儿的知识储备进行挖掘、梳理和提升,结合幼儿的实际生活设计了《楼房与号码》这一数学活动,揭示数字和住址之间的联系,引导幼儿主动将数学知识运用到实际生活中。从生活出发,激发幼儿学习数学的兴趣,让幼儿深刻体会到生活离不开数学,数学是解决生活问题的钥匙,从而增强学习数学的趣味性,正是幼儿园数学教学的价值取向。教学目标:1、在探索操作中尝试发现门牌号码的表示方法和排列规律。2、在主动学习中提高解决问题的能力,积累相关的生活经验。3、能主动发现生活中的数学,体验在生活中学习数学的乐趣。教学准备:材料:纸盒做的楼房材料人手一份,门牌插卡(用不同颜色区别层与间的数字)人手一份,多媒体课件,写有具体地址的信封若干,人物图像若干,彩色胶带卷(用于标示楼房位置)。环境:多媒体、幼儿操作学习的场地、桌椅、地垫人手一块。幼儿:一定的生活经验,了解自己的家庭住址。

  • 中班科学课件教案:沉与浮

    二、活动目的:1、 引导幼儿观察、比较物体在水中的沉浮现象。2、 引导幼儿积极思考,大胆操作和用语言较完整连贯地表达自己的意思。3、 引导幼儿尝试用简单的图画记录观察和探索的结果。三、活动准备:1、小泡沫板、石头、玻璃珠、雪花片、小球、塑料瓶、操作盘放在桌子的中间。2、记录表、笔、水盆。四、活动过程1、教学活动的导入幼儿进入课室室后,坐在座位上。老师:小朋友,我们来看看托盘中都放着哪些东西?

  • 精编个人工匠精神学习心得体会与感受优选八篇

    “创意无限,匠心支撑”。当下,创新创业大潮涌动,“互联网+”颇受青睐,大批创客投身其中。这里头有脚踏实地的深耕者,但也有不少一天到晚想着如何造噱头、拉投资,幻想借互联网的东风,“抄一把就走”之人。与此相应,很多产品往往火了一把便再无踪迹。如此“创”法,除了搅出些过时即破的泡沫,难言价值。创新创业不应成为浮躁的代名词,那些真正成功的互联网神话缔造者,远非鼓吹概念、贩卖情怀这么简单。很多大佬正是以其对细节近乎严苛的追求向大家证明,只有“互联网+工匠精神”,才能出优质产品。

  • 精编个人学习红军长征精神心得体会与感受八篇

    二万五千里长征,一次改变中国人命运的征程已在人们的评说中去过了大半个世纪。照现代社会这种急速更新换代的观念,早已是好几个时代过去了。按我们熟悉的某种号召“过去的就让它过去吧”。再说下去,就成了枭鸣似的烦扰,不免令人生厌。然而长征却不同。人们总在不断的言说、探究、拷问。我想或许是由于长征所代表的一种精神吧――一种全人类永恒追求的精神――坚持到底。  “红军不怕远征难”的精神!正因为这心中永存的信念,红军才有了“万水千山只等闲,五岭逶迤腾细浪,乌蒙磅礴走泥丸”的英雄气概!正因为这心中永存的信念,才有了“亲人送水来解渴,军民鱼水一家人”的温情!

  • 中班语言教案:八仙过海的传说

    3、培养幼儿爱听、会讲、能表演的学习能力和热爱祖国传统文化的美好情感。【活动准备】 1、“八仙”人物图片,“八仙过海”故事课件。 2、拐杖、萧、花篮等道具若干,《八仙过海》歌曲课件。 3、词卡“八仙过海,各显神通”。【活动过程】 1、播放歌曲“八仙过海”,让幼儿在优美的乐曲中坐好。 2、谈话引出八仙。 小朋友们好,谁能告诉老师:你都知道哪些神仙?嗯,小朋友们知道得真多,他们都会腾云驾雾,飞来飞去,还会很多变化。小朋友们喜欢神仙吗?接下来老师也给大家介绍几位神仙。” 3、出示“八仙”人物图片,了解“八仙”人物的典型特征。 向幼儿介绍“八仙”的名字,引导幼儿观察每位神仙的特征和他们手中拿的宝物,引导幼儿模仿一下他的神态,每介绍一位就让幼儿说出这是我们新认识的第几位神仙。

  • 人教A版高中数学必修一单调性与最大(小)值教学设计(1)

    《函数的单调性与最大(小)值}》系人教A版高中数学必修第一册第三章第二节的内容,本节包括函数的单调性的定义与判断及其证明、函数最大(小)值的求法。在初中学习函数时,借助图像的直观性研究了一些函数的增减性,这节内容是初中有关内容的深化、延伸和提高函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是前一节内容函数的概念和图像知识的延续,它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础;在解决函数值域、定义域、不等式、比较两数大小等具体问需用到函数的单调性;同时在这一节中利用函数图象来研究函数性质的救开结合思想将贯穿于我们整个高中数学教学。

  • 人教A版高中数学必修一单调性与最大(小)值教学设计(2)

    《函数的单调性与最大(小)值》是高中数学新教材第一册第三章第2节的内容。在此之前,学生已学习了函数的概念、定义域、值域及表示法,这为过渡到本节的学习起着铺垫作用。学生在初中已经学习了一次函数、二次函数、反比例函数的图象,在此基础上学生对增减性有一个初步的感性认识,所以本节课是学生数学思想的一次重要提高。函数单调性是函数概念的延续和拓展,又是后续研究指数函数、对数函数等内容的基础,对进一步研究闭区间上的连续函数最大值和最小值的求法和实际应用,对解决各种数学问题有着广泛作用。课程目标1、理解增函数、减函数 的概念及函数单调性的定义;2、会根据单调定义证明函数单调性;3、理解函数的最大(小)值及其几何意义;4、学会运用函数图象理解和研究函数的性质.数学学科素养

  • 倾斜角与斜率教学设计人教A版高中数学选择性必修第一册

    (2)l的倾斜角为90°,即l平行于y轴,所以m+1=2m,得m=1.延伸探究1 本例条件不变,试求直线l的倾斜角为锐角时实数m的取值范围.解:由题意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若将本例中的“N(2m,1)”改为“N(3m,2m)”,其他条件不变,结果如何?解:(1)由题意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由题意知m+1=3m,解得m=1/2.直线斜率的计算方法(1)判断两点的横坐标是否相等,若相等,则直线的斜率不存在.(2)若两点的横坐标不相等,则可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)进行计算.金题典例 光线从点A(2,1)射到y轴上的点Q,经y轴反射后过点B(4,3),试求点Q的坐标及入射光线的斜率.解:(方法1)设Q(0,y),则由题意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即点Q的坐标为 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)设Q(0,y),如图,点B(4,3)关于y轴的对称点为B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由题意得,A、Q、B'三点共线.从而入射光线的斜率为kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,点Q的坐标为(0,5/3).

  • 圆与圆的位置关系教学设计人教A版高中数学选择性必修第一册

    1.两圆x2+y2-1=0和x2+y2-4x+2y-4=0的位置关系是( )A.内切 B.相交 C.外切 D.外离解析:圆x2+y2-1=0表示以O1(0,0)点为圆心,以R1=1为半径的圆.圆x2+y2-4x+2y-4=0表示以O2(2,-1)点为圆心,以R2=3为半径的圆.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圆x2+y2-1=0和圆x2+y2-4x+2y-4=0相交.答案:B2.圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦所在的直线方程是 . 解析:两圆的方程相减得公共弦所在的直线方程为4x+3y-2=0.答案:4x+3y-2=03.半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程为( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:设所求圆心坐标为(a,b),则|b|=6.由题意,得a2+(b-3)2=(6-1)2=25.若b=6,则a=±4;若b=-6,则a无解.故所求圆方程为(x±4)2+(y-6)2=36.答案:D4.若圆C1:x2+y2=4与圆C2:x2+y2-2ax+a2-1=0内切,则a等于 . 解析:圆C1的圆心C1(0,0),半径r1=2.圆C2可化为(x-a)2+y2=1,即圆心C2(a,0),半径r2=1,若两圆内切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知两个圆C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直线l:x+2y=0,求经过C1和C2的交点且和l相切的圆的方程.解:设所求圆的方程为x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圆心为 1/(1+λ),2/(1+λ) ,半径为1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圆x2+y2=4显然不符合题意,故所求圆的方程为x2+y2-x-2y=0.

  • 直线与圆的位置关系教学设计人教A版高中数学选择性必修第一册

    切线方程的求法1.求过圆上一点P(x0,y0)的圆的切线方程:先求切点与圆心连线的斜率k,则由垂直关系,切线斜率为-1/k,由点斜式方程可求得切线方程.若k=0或斜率不存在,则由图形可直接得切线方程为y=b或x=a.2.求过圆外一点P(x0,y0)的圆的切线时,常用几何方法求解设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0,由圆心到直线的距离等于半径,可求得k,进而切线方程即可求出.但要注意,此时的切线有两条,若求出的k值只有一个时,则另一条切线的斜率一定不存在,可通过数形结合求出.例3 求直线l:3x+y-6=0被圆C:x2+y2-2y-4=0截得的弦长.思路分析:解法一求出直线与圆的交点坐标,解法二利用弦长公式,解法三利用几何法作出直角三角形,三种解法都可求得弦长.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交点A(1,3),B(2,0),故弦AB的长为|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.设两交点A,B的坐标分别为A(x1,y1),B(x2,y2),则由根与系数的关系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的长为√10.解法三圆C:x2+y2-2y-4=0可化为x2+(y-1)2=5,其圆心坐标(0,1),半径r=√5,点(0,1)到直线l的距离为d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦长为("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦长|AB|=√10.

  • 九年级下册道德与法治世界舞台上的中国1作业设计

    A.大力深化大数据、人工智能等研发应用B.高举新时代改革开放旗帜,继续全面深化改革、全面扩大开放C.加强国际交流与合作,培育竞争新优势D.建立更加公平、更可持续的社会保障制度 2、发展是解决我国一切问题的基础和关键。全面建设社会主义现代化国家,必须始终抓好发展 这个基础和关键。中国积极谋求发展,就必须 ( )①引领、主导全球规则的制定②要加快构建以国内大循环为主体、国内国际双循环相互促进的新发展格局③掌握国际竞争主动权④积极寻求新的经济增长点A. ①②③ B.①②④ C.①③④ D.②③④3、“中国制造2025”构想的提出,对于中国传统制造业的转型升级影响深远。新一代信息技术 和传统工业的深度融合已成为中国新一轮制造发展制高点,我们要把智能制造作为中国制造未 来的主攻方向,实现由“中国制造”向“中国创造”“中国智造”转型。这有利于 ( )①促进我国经济实现由实体经济向虚拟经济转变②通过新技术将传统产业打造为高新技术产业③推动传统产业优化升级,从而进一步提升我国在全球分工中的地位④催生新兴产业,形成新的经济增长点

  • 九年级下册道德与法治世界舞台上的中国2作业设计

    (四) 作业分析与设计意图这是一项基于素质教育导向的整体式课时作业设计,结合信息技术下的思政课与信息 技术的深度有效融合,不仅完成了培育学生课程核心素养提高政治认同的目标,而且有效 的激发了学生的学习兴趣。作业以学生的“微型讨论会”为主要情境,设置了三项任务,层层 递进,螺旋式上升。作业以填写“活动记录”的形式呈现。教师从“掌握必备知识, 理论联系实 际 ”“培养核心素养,提高政治认同”等 5 个维度对作业进行评价,以“优秀”“良好” “合格”三个等级呈现。学生通过“微型讨论会”的方式,畅谈自己对中国在国际社会中的 地位和作用及相关外交政策的了解,通过该作业设计,教师可以引导学生关注国家和世界 局势,树立正确的人生观,世界观和价值观。 以增强学生的政治认同和责任意识。

  • 九年级下册道德与法治世界舞台上的中国4作业设计

    8. 2022 年,俄乌冲突以来,美方不断泛化国家安全概念,滥用出口管制措施, 多次以所谓“人权”等为由,对中国企业无理打压,严重破坏国际经贸规则。 同时美国不顾中方多次警告,将航母驶入南海进行挑衅,美国国会操弄“台湾地图牌” 。面对美方的无端打压和干涉,我国应该 ( )A.谦让机遇,合作共赢,与美国共发展B.抓住机遇,迎接挑战,积极谋求发展C.集中力量,增强实力,掌控世界趋势D.主动迎击,不畏强权,巩固霸主地位9. 中华诗词浓缩了中华文化的精华,经过岁月的沉淀仍然闪烁着时代的光芒。 从下列经典诗句中得到的启示,你认为不正确的是 ( )A.“万物并育而不相害,道并行而不相悖”—在国际交往中我国要坚持合作、共赢的理念,做到互信互利 B.“国虽大,好战必亡;天下虽平,忘战必亡”— 中国要屹立于世界民族之林,必须通过战争树立国际地位C.“天与不取,反受其咎;时至不行,反受其殃”—机遇稍纵即逝,我们要抓住机遇,勇于创新,追求发展D.“同心掬得满庭芳”—各族人民要铸牢中华民族共同体意识,手足相亲、守望相助10.从漫画“新四大发明”中,下列认识和理解正确的有 ( )①我们要培育壮大经济发展新动能②我国把提升发展质量放在首位③中国决定着世界经济发展的趋势④中国与世界各国共享发展成果

  • 人教版高中数学选修3排列与排列数教学设计

    4.有8种不同的菜种,任选4种种在不同土质的4块地里,有 种不同的种法. 解析:将4块不同土质的地看作4个不同的位置,从8种不同的菜种中任选4种种在4块不同土质的地里,则本题即为从8个不同元素中任选4个元素的排列问题,所以不同的种法共有A_8^4 =8×7×6×5=1 680(种).答案:1 6805.用1、2、3、4、5、6、7这7个数字组成没有重复数字的四位数.(1)这些四位数中偶数有多少个?能被5整除的有多少个?(2)这些四位数中大于6 500的有多少个?解:(1)偶数的个位数只能是2、4、6,有A_3^1种排法,其他位上有A_6^3种排法,由分步乘法计数原理,知共有四位偶数A_3^1·A_6^3=360(个);能被5整除的数个位必须是5,故有A_6^3=120(个).(2)最高位上是7时大于6 500,有A_6^3种,最高位上是6时,百位上只能是7或5,故有2×A_5^2种.由分类加法计数原理知,这些四位数中大于6 500的共有A_6^3+2×A_5^2=160(个).

上一页123...143144145146147148149150151152153154下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!