已知一水坝的横断面是梯形ABCD,下底BC长14m,斜坡AB的坡度为3∶3,另一腰CD与下底的夹角为45°,且长为46m,求它的上底的长(精确到0.1m,参考数据:2≈1.414,3≈1.732).解析:过点A作AE⊥BC于E,过点D作DF⊥BC于F,根据已知条件求出AE=DF的值,再根据坡度求出BE,最后根据EF=BC-BE-FC求出AD.解:过点A作AE⊥BC,过点D作DF⊥BC,垂足分别为E、F.∵CD与BC的夹角为45°,∴∠DCF=45°,∴∠CDF=45°.∵CD=46m,∴DF=CF=462=43(m),∴AE=DF=43m.∵斜坡AB的坡度为3∶3,∴tan∠ABE=AEBE=33=3,∴BE=4m.∵BC=14m,∴EF=BC-BE-CF=14-4-43=10-43(m).∵AD=EF,∴AD=10-43≈3.1(m).所以,它的上底的长约为3.1m.方法总结:考查对坡度的理解及梯形的性质的掌握情况.解决问题的关键是添加辅助线构造直角三角形.
教学目标:1、理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值。2、了解计算一个锐角的正切值的方法。教学重点:理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值。教学难点:计算一个锐角的正切值的方法。教学过程:一、观察回答:如图某体育馆,为了方便不同需求的观众设计了多种形式的台阶。下列图中的两个台阶哪个更陡?你是怎么判断的?图(1) 图(2)[点拨]可将这两个台阶抽象地看成两个三角形答:图 的台阶更陡,理由 二、探索活动1、思考与探索一:除了用台阶的倾斜角度大小外,还可以如何描述台阶的倾斜程度呢?① 可通过测量BC与AC的长度,② 再算出它们的比,来说明台阶的倾斜程度。(思考:BC与AC长度的比与台阶的倾斜程度有何关系?)答:_________________.③ 讨论:你还可以用其它什么方法?能说出你的理由吗?答:________________________.2、思考与探索二:
2.增进幼儿装饰美和色彩美的感受和经验。 活动准备:1.剪好花边的铅画纸2.记号笔、油画棒。(人手一份) 3.集邮册3本。活动重点: 幼儿学会用鲜明、柔和的色彩装饰邮票。活动流程:欣赏邮票--师生讨论--幼儿作画--评价活动
2.增进幼儿装饰美和色彩美的感受和经验。 活动准备:1.剪好花边的铅画纸2.记号笔、油画棒。(人手一份) 3.集邮册3本。活动重点: 幼儿学会用鲜明、柔和的色彩装饰邮票。活动流程:欣赏邮票--师生讨论--幼儿作画--评价活动
我设计的这个活动是受到一个经典的体育游戏的启发对其加以修改而成。游戏的名字叫《熊和小孩》,为了提高幼儿的兴趣,我为游戏编了一首简短的儿歌《熊来啦》,将规则反映在了儿歌中,帮助幼儿掌握游戏规则。同时我发现大班幼儿的求知欲很强,所以这个游戏中也插入熊的习性方面的内容。另外,其实很多幼儿早就会玩《木头人》的游戏,这两个游戏的玩法很相似,然而游戏换一首儿歌体现,会带给幼儿新鲜感。我设计了让幼儿自己商定游戏规则的环节,这样幼儿在活动中能主动学习,并且按自己的想法玩游戏,能提高幼儿的积极性,并体验成功感。活动名称:体育游戏《熊来啦》活动目标:1、幼儿喜欢参与游戏,情绪积极愉快。2、幼儿通过游戏培养抑制自己行为的能力,训练反应的灵敏性。 3、幼儿能按游戏规则进行游戏。活动准备:“熊”头饰一只,圈划幼儿活动范围和“熊家”活动过程:1、导入活动。 教师:“如果你突然遇到一头大狗熊,你该怎么样,它才不会吃你?”幼儿讨论提出意见。
2、积极参与,体验造高楼的乐趣。准备:软垫、纸砖、遮挡物、3只高矮不等的小猴、测量长度用的圆筒、橡皮筋、小铃、工地数字号码牌流程:一、小猴比高矮(理解物体要在同一水平面上才能比高矮。) 1、第一次比较:遮挡物下比高矮 导语:有几只调皮的猴子要来比高矮了,看一看,有几只小猴子?它们谁最高? 2、第二次比较:无遮挡物下比高矮 过渡:真得是这样吗?我们再来看一看。(拿去遮挡物) 提问:现在谁长得最高? C:穿红衣服/蓝衣服的猴子最高。 T:有的猴子站在砖头上,有的没有站在砖头上,这样不能比。到底谁最高?谁有好办法来比一比?谁能从高到矮帮它们排一排位置? 小结:原来比高矮要站在同样高的平地上面比,否则比出来的结果就会不准确。
二、教学目标1、知识与技能:使学生经历探索加法交换律的过程,理解并掌握加法交换律,初步感知加法交换律的价值,发展应用意识。2、数学思考:使学生在学习用符号、字母表示加法交换律的过程中,初步发展学生的符号感,逐步提高归纳、推理的抽象思维能力。3、解决问题:运用加法交换律的思想探索其他运算中的交换律。4、情感与态度:使学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成独立思考和探究问题的意识和习惯。三、教学重点:理解并运用加法交换律。四、教学难点:在学生已有知识经验的基础上引导学生归纳出加法交换律。五、教学关键:引导学生运用各种不同的表达方法理解加法交换律的思想。六、教学过程(一)情境,形成问题1、谈话:同学们喜欢运动吗?你最喜欢哪项体育运动?李叔叔是一个自行车旅行爱好者,咱们一起去了解一下李叔叔的情况。1、出示李叔叔骑车旅行的情境图。仔细观察这幅图,你从图上知道哪些信息?
1,猜一猜 师:这里有一个盒子,盒子里有一朵花,谁能猜出这朵花是什么颜色的?盒子里的花儿的颜色是确定的,为什么你们会有那么多不同的答案? ……师:好,老师给一个提示:红色和黄色。会是什么颜色呢?师:要想准确猜出球的颜色,有一个统一的答案,怎么办? 师:满足你的愿望,第二个提示:不是红色的。2、猜球游戏: 小朋友看,老师这里有一个白色和一个黄色的乒乓球,现在把它们放到盒子里,我们一起来玩一个猜一猜的游戏,好吗? 师:我摸出其中一个,你猜猜是什么颜色的球呢?师:猜得准吗?老师给你们一些提示吧:我摸出的不是黄球,那我摸出的是什么颜色的球?你是怎么猜的?师:那盒子里面的是什么颜色的球呢?你是怎么猜的?小朋友们很聪明,根据老师的提示能准确地判断出球的颜色,这种方法就是我们今天要学习的简单的推理。
2. 内容内在逻辑本单元亲子之间的交往既承接了上一课的“师生之间”的交往,也为七年级 下册关于中学生提升在集体中的交往水平和能力奠定了坚实的基础,因此本单元 在教材中起承上启下的作用。第一框“家的意味”,通过对“家规” “家训”的探究,引出中国家庭文化中“孝”的精神内涵,引导学生对家庭美德进行深入思考,学会孝亲敬长。第二框“爱在家人间”,通过体验家人间的亲情之爱,进而引导学生感受对 家人割舍不断的情感。第三框“让家更美好”,通过对传统家庭与现代家庭的比较,引导学生认识 现代家庭的特点,树立共创共享家庭美德的意识,共创和谐美德之家。从初识家中“孝”,体验家中“爱”,处理家中“冲突”,到自觉共建家庭 “美德”,学生逐步体味亲情之爱,将“亲情之爱”内化于心、夕卜化于行。(三)学情分析(1) 认知水平与心理特点七年级学生正处于青春期,是生理和心理急剧变化的关键时期,自我意识不 断增强,逆反心理更加强烈,情绪波动较大。
二、教材分析 学习中国地理知识和运用常见地图、地理图表,以及填写简单地图和图表能力,培养学生对地理事物的观察,记忆想象思维能力,以及运用所学知识分析简单的地理问题的能力。初步树立正确资源观、人口观、环境观,懂得协同人类发展与环境关系。 三、本学期教学目的 本学期是在八年级上册讲述中国地理概况、自然环境、自然资源和经济发展的一般特征的基础上开始进一步阐述我国不同的地理差异,认识我国四大地理区域之间的差异。了解省级区域、省内区域和跨省区域的位置、自然特征及经济的发展状况。
2.内容内在逻辑本单元为八年级下册第二单元内容。本单元由导语、第三课和第四课组成、第三课“公民权利”设有两课,分别是“公民基本权利”和“依法行使权利”、第四课“公民义务”设有两框,分别是“公民基本义务”和“依法履行义务”。单元导语首先明确中学生在国家中具有公民身份,是国家的主人,依法享受公民权利并承担公民义务。指明公民基本权利和义务是宪法的核心内容,从而激发学生学习公民基本权利和义务具体内容的兴趣。引导学生进一步探究如何依法行使公民权利、如何依法履行公民义务,思考依法行使公民权利、履行义务对个人、家庭、社会及国家的重要意义。引言指明了公民权利对于我们参与社会生活、实现人生幸福的意义,意在引发学生对公民权利在个人成长、社会进步与国家发展方面所具有的价值的初步思考,启发学生思考如何依法行使和维护自身享有的公民权利,进而导入新课。
本单元在整册教材中起到了承前启后的作用:第一单元《坚持宪法至上》主 要是培养学生的宪法意识,为后面的内容打下思想基础,通过本单元的学习,让 学生进一步认识宪法规定的公民基本权利和基本义务,帮助学生树立正确的权利 观和义务观,是对第一单元内容的深入和延伸;第三单元《人民当家做主》主要 是帮助学生更多的了解我国基本制度和国家机关,鼓励学生积极参与政治生活, 增强对国家的认同感和主人翁意识,学生需要学会正确行使公民的政治权利和自 由,因此,本单元又为第三单元内容的学习打下基础,作好铺垫。其中,第三课主要介绍公民的基本权利、如何正确行使权利及公民维权的途径,帮助学生树立正确的权利观;第四课主要介绍公民的基本义务、如何自觉履 行义务及违反义务须承担的责任,并在两课的基础上总结权利和义务的关系,帮 助学生树立正确的义务观,最终形成“权责一致”的观念。
某小区突发火情。消防中队接警后迅速赶来, 但由于沿途不少车辆乱停放堵 住道路, 消防车无法顺利进入小区。危急时刻, 小区一名热心大姐奋力呼救, 号 召周围居民配合物业人员一起用人力将沿途车辆一一搬开, 这才让消防车顺利抵 达起火楼栋,经过及时疏散,无人员伤亡。某校八(2)班以上述新闻为背景,组织一次以“依法行使权利,让生命通 道畅通”为主题的社会实践活动。请你参与其中。 (1)调查组的同学在某小区发现有一辆私家车占用了消防通道。联系车主后, 该车主说: “我自己的车, 想停哪儿就停哪儿, 哪有那么多火灾! ”请你从“权 利与义务的关系”的角度对其进行劝说该如何处理好权利和义务的关系。①公民的权利与义务相互依存、相互促进。 ②公民既是法定权利的享有者, 又是法定义务的承担者。 ③我们不仅要增强权利意识, 依法行使权利, 而且要增 强义务观念, 自觉履行法定的义务。因此, 作为小区居民, 我们在依法行使停车 权利的同时也要自觉履行维护小区消防安全的义务。
②积极参与国家事务和社会事务的管理③在享有劳动权利的同时,也履行了劳动的义务④既获得了劳动报酬,也为国家和社会作出了贡献 A.①② B.②③ C.①④ D.③④11.2020 年 6 月 19 日,国家林业和草原局、农业农村部发布通知,就《国家重点 保护野生动物名录》公开征求意见。画眉、啄木鸟、田螺等被增列入名录中,55 个鲸豚类和猛禽类等物种保护等级升级。作为中学生,保护野生动物是:( ) A.法律禁止做的,我们坚决不做 B.法律要求做的,我们必须去做C.道德要求做的,我们积极去做 D. 自觉自愿行为,可做也可不做 12.遇到交通肇事,不按照正常程序处理,而是采取极端的方式解决。陕西省榆 林市公安局榆阳分局镇川派出所,对涉嫌非法入侵他人住宅的 5 名嫌疑人刑拘。 这表明:( )①公民的住宅不受侵犯②禁止非法搜查或者非法侵入公民的住宅③公民权利如果受到损害,要懂得依照法定程序维护权利④我们在行使自由和权利的时候,不得损害其他公民的合法的自由和权利
4.阅读材料,回答问题:疫情防控期间,一方面,公民面临着被感染的风险,有权获得政府和社会组 织提供的专业服务与保障。为此,国家有关部门出台了免除个人医疗费用负担的 政策,让广大患者消除了疾病治疗的后顾之忧。另一方面,公民也应当成为疫情 防控中的责任主体之一,依法履行自己的义务,如实报告自己的健康状况,配合 相关管理部门做好居家隔离。(1)结合材料,分析公民行使权利与履行义务之间的关系。(2)作为青少年,我们应该如何履行法律义务?5. 阅读材料,回答问题:2021年3月1日,《中小学教育惩戒规则(试行)》(以下简称“《规 则》”)正式施行。《规则》指出,学生有下列情形之一,学校及其教师应当予 以制止并进行批评教育,确有必要的,可以实施教育惩戒:(一)故意不完成教 学任务要求或者不服从教育、管理的;(二)扰乱课堂秩序、学校教育教学秩序 的;(三)吸烟、饮酒,或者言行失范违反学生守则的。
1.【解析】根据教材所学,依法治国要求全民守法,正确行使权利,自觉履行义务, A项没有履行依法纳税的义务,排除; B项没有履行服兵役的义务,排除;C项侵害救火英雄的名誉权,是一种违法行为,要承担相应的法律责任,故排除;D项自觉履行了维护国家安全和利益的义务,故符合题意。【答案】D2.【解析】该题考查公民的权利和义务的关系; 依据课本内容,公民的权利和义务是一致的。公民的权利和义务是密不可分的, 没有无义务的权利,也没有无权利的义务;题干中“不愿履行或轻视义务”割裂了权利与义务的关系,没有树立起正确的权利义务观念。 所以A项正确; BCD错误。【答案】A。3. 【解析】本题主要考查遵守宪法和法律这一公民基本义务。遵守和维护社会秩序是这一基本义务的具体要求,不服从国家疫情封控管理属于扰乱社会秩序的违法行为, 要承担一定的【答案】(1) 劝阻爸爸。(2) 自觉维护社会秩序, 依法履行公民义务, 法律要求的必须做,禁止做的坚决不做,否则就会受到法律制裁。
方法总结:本题结合三角形内角和定理考查反证法,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况.如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.三、板书设计1.等腰三角形的判定定理:有两个角相等的三角形是等腰三角形(等角对等边).2.反证法(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.解决几何证明题时,应结合图形,联想我们已学过的定义、公理、定理等知识,寻找结论成立所需要的条件.要特别注意的是,不要遗漏题目中的已知条件.解题时学会分析,可以采用执果索因(从结论出发,探寻结论成立所需的条件)的方法.
活动内容:人是五官——眼睛活动目标:1。了解眼睛对人的重要性 2.懂得如何保护眼睛 3。培养幼儿关心、帮助残疾人的情感活动准备:录音机、磁带、眼罩与幼儿人数相等、三幅头像画、盲人图片、一些关于保护眼睛的图片、“眼睛”六个活动过程:一:引出主题1. 游戏:指五官轿是说一个五官的名称,幼儿必须又快又准得指出来2看说贴得准。活动
二、学情分析 在校领导的正确领导下,本学期我校生源比去年有了重大的变化.高一年级招收了400多名新生,学校带来了新的希望.然而,我清醒地认识到任重而道远的现实是,我校实验班分数线仅为140分,普通班入学成绩仍居附近各中学之末.要实现我校教学质量的根本性进步,非一朝一夕之功.实验班的教学当然是重中之重,而普通班又绝不能一弃了之.现在的学情与现实决定了并不是付出十分努力就一定有十分收获.但教师的责任与职业道德时刻提醒我,没有付出一定是没有收获的.作为新时代的教师,只有付出百倍的努力,苦干加巧干,才能对得起良心,对得起人民群众的期望.
1.直线2x+y+8=0和直线x+y-1=0的交点坐标是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程组{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交点坐标是(-9,10).答案:B 2.直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,则k的值为( )A.-24 B.24 C.6 D.± 6解析:∵直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,可设交点坐标为(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故选A.答案:A 3.已知直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,若l1⊥l2,则点P的坐标为 . 解析:∵直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,联立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴点P的坐标为(3,3).答案:(3,3) 4.求证:不论m为何值,直线(m-1)x+(2m-1)y=m-5都通过一定点. 证明:将原方程按m的降幂排列,整理得(x+2y-1)m-(x+y-5)=0,此式对于m的任意实数值都成立,根据恒等式的要求,m的一次项系数与常数项均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤