一、说教学思想我在本课教学设计中坚持以人文科技教育为中心,以学生为主体;以兴趣为支点、以交流为目的、以活动任务为途径的教学原则。通过最新的计算机多媒体等教学手段创造贴近生活的教学情境,并在课堂上大量地采用互动式教学模式(包括人机互动),使学生自然进入英语世界;在教学过程中,综合运用情景教学、任务型教学、交际教学、整体语言教学等手段,全面培养学生的听、说、读、写等语言综合运用能力。在课内、课外全面利用网络技术,如在线英语学习、博客(Blog)、魔灯(Moodle)、QQ群、论坛(BBS)等手段,做到英语与信息技术的完美整合。二、说教材与教材处理本课采用的教材是是人教版小学英语(PEP)六年级上册,内容为学生学完I Have a Pen Pal后的一节综合实践活动(复习)课。本单元教学重点为E-mail和英语书信的写法。通过该单元的学习,学生基本了解一些英语书信书写的方法。但是学生还没有利用计算机网络去写英文E-mail(包括写E-mail内容和写E-mail地址。)
4,在向学生提出了“ the water cycle”后,为了学生能够形象地解释,我马上播放flash “the water cycle”,5,通过观看flash “the water cycle”,学生已经能够理解水循环的意思,所以在理解的基础上,我出现了今天的chant,利用Chant的目的:1、记忆单词;2、熟悉新句型;3、使课堂更生动、活泼,让学生学得轻松。6,最后,播放了一个“一滴水”flash ,把本课的主题升华,让学生在一堂课中能够有所学有所悟。Water is useful(有用的). Let’s love it and protect(保护) it. Step 4 Homework在有限的时间里,通过练习作业本上的几个题目,来看看学生对本课的学习掌握了多少,同时也反馈给老师一些信息,看看本课哪些地方需要下一课时补充巩固一下。整堂课下来,自身受益匪浅,当然也发现了很多需要改进的地方,作为一个新教师,教学经验不足,课堂应变能力不强,教学用语生疏等等,希望在这里可能得到各位老师的指点和教导。
四.说教学方法 “任务型”教学方法. 在本课的教学中,学生要完成购买书籍这样一个任务.这给学生创造了一个真实的语境去运用所学的句子进行交际.教师安排了4个活动:单词操练游戏、小组竞赛、小组活动和购物. 五.说教学准备 (一)教师准备:1.单词卡片。2.课件。3.各种书籍。 (二)学生准备:各种书籍. 六.说学习策略 在本节课上,学生可以通过多种方法来学习并记忆单词,如跟读、拼读、分音节、读看实物说单词、听单词拿实物等等.小组竞赛能激发学生的学习热情,鼓励学生表现自己. 七.说教学过程 一.复习和热身(Warm up) 1.唱英语歌曲. 2.朗读“口语天天练”的句子. 3.日常对话. 二.呈现新课(Presentation) 1.播放课件,呈现单词.学生跟读单词. 2.学习新单词. (1)教师带读单词,学生跟读. (2)拼读单词. (3)学生熟读单词.
(一)复习导入 1. 师:同学们,上节课我们学习了折扣,你会做下面的题吗?(课件第2张)(1)五五折表示十分之(五点五),也就是(55)%。 (2)一件商品打九八折出售,就是按原价的(98%)出售。(3)一件上衣原价75元,现在打八折售出,现在买这件上衣需要(60)元。(4)现价=(原价)×(折扣)2.师:生活中的百分数还有很多,比如说“成数”。例如:今年我省油菜籽比去年增产二成。这节课我们就来学习“成数”。(板书课题:成数)(课件第3张)【设计意图】 “折扣”与“成数”虽然运用不一样,但解决方法大致相同,复习不仅可以起到巩固作用,也能让学生对新知的解决有一些铺垫。(二)探究新知 1、探究成数的含义以及成数和百分数的关系。(课件第4张)(1)农业收成,经常用成数来表示。你知道什么是成数吗? 生1:成数表示一个数是另一个数的十分之几,通称“几成”。“一成”就是十分之一,改写成百分数是10%。(2)填一填。(课件第5张)“二成”就是(十分之二),改写成百分数是(20%);“三成五”就是(十分之三点五),改写成百分数是(35%)。“四成三”就是(十分之四点三),改写成百分数是(43%);“六成五”就是(十分之六点五),改写成百分数是(65%)。(3)把下面的成数改写成百分数。 (课件第6张)三成=(30)% 四成六=(46)% 九成九=(99)% 二成五=(25)% 一成二=(12)% 七成三=(73)%
(二)探究新知 1. 探究圆锥的体积的计算方法,学习例2。师:圆锥的体积和圆柱的体积有没有关系呢?圆柱的底面是圆,圆锥的底面也是圆……通过实验探究一下圆锥和圆柱体积之间的关系。小组合作探索:(1)各组准备好等底、等高的圆柱、圆锥形容器。(2)用倒沙子或水的方法试一试。(3)圆锥的体积与同它等底等 高的圆柱体积之间有什么关系?(4)小组活动,师巡视指导。2.推导圆锥体积的计算方法。 (1)课件演示等底等高的圆柱和圆锥
(一)观图激趣、设疑导入 出示课件的第一张幻灯片。师:老师这里有三道题哪位同学会做?1、已知路程和时间,怎样求速度?2、已知总价和数量,怎样求单价?3、已知工作总量和工作时间,怎样求工作效率?生1:速度=路程÷时间。生2:单价=总价÷数量。生3:工作效率=工作总量÷工作时间。师:同学们可真棒!这节课我们就来研究这些数量间的一些规律和特征。你们准备好了吗?生:准备好了!(板书:成正比例的量)【设计意图】引发学生学习的兴趣,唤起学生已有的只是经验,更好地进行新旧知识的结合,也有利于引导学生发现数量关系内在的规律。(二)探究新知(PPT课件出示例1)文具店有一种铅笔,销售的数量与总价的关系如下表。 数量/支12345678…总价/元3.5710.51417.52124.528…观察上表,回答下面的问题。(1)表中有哪两种量?(2)总价是怎样随着数量的变化而变化的?(3)相应的总价与数量的比分别是多少?比值是多少?1.探究数量与总价两个量之间的关系。师:仔细观察这张表格,它为我们提供了哪些数学信息?生:给我们提供了文具店销售彩带的数量是1,2,3,4,5,6,7,8米,总价分别是:3.5, 7,10.5,14,17.5,21,24.5,28元。师:表中有哪两种量?生:有数量和总价两种量。师:总价是怎样随着数量的变化而变化的?生:总价是随数量的增加而增加的。师:相应的总价与数量的比分别是多少?比值是多少?生1:=3.5 =3.5 =3.5 =3.5 =3.5 =3.5 =3.5 =3.5生2:相对应的总价和数量的比的比值是一定的。师:总价与数量的比值表示什么?
2.过程与方法 培养学生的应用意识和实践能力,使学生感受数学在生活中的作用。3.情感态度与价值观结合实际对学生进行思想品德教育,鼓励学生节约用钱,支援贫困地区的失学儿童。 【教学重点】 理解本金、利率和利息的含义正确地计算利息。 【教学难点】 正确地计算利息。【教学方法】启发式教学、自主探索、合作交流、讨论法、讲解法。【课前准备】 多媒体课件【课时安排】 1课时【教学过程】(一)复习导入 1. 师:同学们,你们到银行存钱或取过钱吗?(课件第2张)人们为什么要把钱存入银行呢?生1:人们常常把暂时不用的钱存入银行储蓄起来。(课件第3张)生2:储蓄不仅可以支援国家建设,也使得个人钱财更安全,还可以增加一些收入。2.师:这节课我们就走进银行,来来学习“利率”的知识。(板书课题:利率)
2.过程与方法 经历圆锥的认识过程,体验探究发现的学习方法。3.情感态度与价值观 感受数学与实际生活的联系,激发学生学习数学的兴趣。【教学重点】 掌握圆锥的特征,及各部分名称。【教学难点】圆锥高的测量方法。【教学方法】启发式教学、自主探索、合作交流、讨论法、讲解法。【课前准备】多媒体课件、圆锥、直尺
2.过程与方法 通过小组合作整理知识框架,提高学习的系统性,培养学生归纳、总结等自我复习能力及团队合作精神,加强生与生之间的合作学习能力和综合运用数学知识解决实际生活问题的能力。3.情感态度与价值观在复习活动中让学生体验数学与生活实际的密切联系,培养学生的数学应用意识,激发学生成功学习数学和自信心和创新意识,渗透事物间是相互联系的辩证唯物主义观点。【教学重点】 理解比和比例的意义、性质,掌握关于比和比例的一些实际运用和计算。【教学难点】能理清知识间的联系,建构起知识网络。【教学方法】启发式教学、自主探索、合作交流、讨论法、讲解法。【课前准备】
(一)观图激趣、设疑导入 师:上一节我们已经认识了比例,知道两个比怎样才能组成比例,下面请同学们判断一下下面各组的比能否组成比例。(1)0.4∶和1.2∶2 (2)和生1:根据比例的意义,第(1)题,这两个比的比值相等,都是0.6,所以(1)题的两个比能组成比例。生2:我来回答第(2)题,我也利用比例的意义,求出=5,=6,这两个比的比值不相等,所以第(2)题的两个比不能组成比例。师:这两名同学回答的真好,有理有据,让我们为他们的表现鼓掌!师:今天这节课,我们将共同来学习用另一种方法来判断两个比能否组成比例,同学们想知道是什么方法吗?生:想知道。师:那就是比例的基本性质(板书课题:比例的基本性质)。【设计意图】复习学生已有的知识,唤醒学生已有学习经验,教师的提问吸引了学生的注意力,也引发学生的好奇心,为学习新知识开了一个好头。
【教学过程】(一)观图激趣、设疑导入 出示课件的第一张幻灯片。1、成正比例的量有什么特征?2、正比例关系式。生1:两种相关联的量,一种量变化,另一种量也随着变化。生2:两种量中相对应的两个量的比值(商)一定。生3:=k(一定)。师:同学们非常棒!我们今天继续学习两种量的另外一种关系。 (板书:成反比例的量)【设计意图】这种方法的导入,简简单单的一道练习题,把学生的注意力吸引到本节主要内容上来,激起学生的好奇心,真的还有另外一种关系!我可得好好听一听。这样在学习反比例时学生会始终保持高度的精神集中,有利于教师教学顺利进行。(二)探究新知教学例2,探究反比例的意义,理解成反比例的量。1、出示PPT课件回答问题。杯子的底面积与水的高度的变化情况如下表。 杯子的底面积/cm²1015203060…水的高度/cm302015105…观察上表,回答下面的问题。(1)表中有哪两种量?(2)水的高度是怎样随着杯子底面积的大小变化而变化的?(3)相对应的杯子的底面积与水的高度的乘积分别是多少?生1:表中有杯子的底面积和水的高度这两种量。生2:从表中可以看出:水的高度随着杯子的底面积的变大而不断变小,这两种量是相关联的两种量。生3:我来回答(3),相对应的杯子的底面积与水的高度的乘积分别是:10×30=15×20=20×15=30×10=60×5=…=300。生4:乘积一定。师:底面积与高的乘积表示的是什么?生:水的体积。(板书)师:你会算出水的体积吗?生:会。(学生计算,教师出示课件订正)2、揭示反比例的意义。师:积是300,实际就是倒入杯子的水的体积。同学们能用式子表示出它们的关系吗?生:它们的关系是:底面积×高=体积。师:同学们,我们用概括正比例意义时的方法来概括一下反比例的意义吧!生:像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。(板书反比例的意义)3、用字母表示反比例关系:xy=k(一定)。(板书)4、牛刀小试。锅炉房烧煤的天数与每天烧煤的吨数如下表: 每天烧煤的吨数/吨11.522.53烧煤的天数/天3020151210(1)表中有哪两种量?它们是不是相关联的量?(2)写出几组这两种量中相对应的两个数的积,并比较大小,说一说这个积表示什么。(3)烧煤的天数与每天烧煤的吨数成反比例吗?为什么?【参考答案】 (1)每天烧煤的吨数和烧煤的天数,是相关联的量。 (2)1×30=30 1.5×20=30 2×15=30 2.5×12=30 3×10=30 积相等,这个积表示这批煤的总吨数。 (3)成反比例,因为烧煤的天数与每天烧煤的吨数的积一定。【设计意图】学生通过观察、发现、概括经历了整个学习过程,逐步形成定向思维方式,为学会学习打好基础。
(一)观图激趣、设疑导入 出示课件的第一张幻灯片。师:求比值,完成后,说说求比值的方法,这三个比值是什么关系?18∶12 27∶18 2.4∶1.6生1:用比的前项除以比的后项。生2:这三个比值相等。……【参考答案】 18∶12= 27∶18= 2.4∶1.6= 求比值的方法是用比的前项除以比的后项,这三个比值相等。【设计意图】比和比值是解决比例意义的关键所在,只有唤醒学生已有经验,才能更好地让学生投入到学习比例意义活动中来,为实现教学目标做好铺垫。(二)探究新知师:同学们,每周一的早上我们学校都要举行庄严的升国旗仪式,那么,你们对国旗都有哪些了解呢? 生1:我们的国旗是红色的,上面有五颗黄色的五角星。生2:我们的国旗是长方形的。师:同学们回答得真好,说出了自己对国旗的了解,可以看出同学们对我们国家的热爱,老师希望你们一定要好好学习,为我们的五星红旗增光!五星红旗是庄严而美丽的, 并且它与我们数学也有着密切的联系,这也就是我们今天所要研究的内容——比例。(板书课题:比例的意义)国旗长5米,宽米。国旗长2.4米,宽1.6米。国旗长60厘米,宽40厘米。
(一)复习导入 1. 师:同学们,你们经常去超市吧?超市里有时候会有打折的活动,你知道什么是打折吗?(课件第2张)生:商店有时降价销售商品,叫做打折扣销售,俗称“打折”。2.你知道打折的含义吗?几折就表示十分之几,也就是百分之几十。比如打七折,就是按照原价的十分之七出售,也就是按原价的70%出售。这节课我们就来学习有关折扣的知识。(课件第3张)【设计意图】联系学生的生活实际引入课题,引起学生学习兴趣,使学生体会到生活中处处有数学。(二)探究新知 1、探究折扣的含义,计算打折后的价钱。(课件第3张)(1)星期天,小雨和爸爸来到商场买东西,正好赶上打折活动。小雨问爸爸:什么叫做“八五折”?你能回答小雨的问题吗?生1:“八五折”就是按原价的85%出售。你知道“九折”是多少吗?生2:“九折”就是按原价的90%出售。(2)爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出售。买这辆车用了多少钱?你会列式吗?(课件第4张)小组合作:你是怎样想的?说说你的思考过程。(课件第5张)(3)汇报交流:生1:把原价看做单位“1”,打八五折就是按原价的85%出售。(课件第6张)生2:现价=原价×折扣,求现价,做乘法。生3:180×85%=153(元)答:买这辆车用了153元。2、探究计算打折后便宜了多少钱的方法。爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少元?(课件第7张)(1)小组讨论:先求什么?再求什么?说说你的思考过程。生1:我先求现价是多少,再求比原价便宜了多少元。(课件第8张)列式为:160×90%=144(元)160-144=16(元)答:比原价便宜了16元。生2:我先求现价比原价便宜了百分之几,再求比原价便宜了多少元。(课件第9张)列式为:160×(1-90%)=160×10%=16(元)
(一)激趣导入 课件出示一些图片:师:同学们,今天老师给你们带来了一些礼物,大家想不想知道是什么?我们一起看大屏幕:你们认识这些物体吗?在生活中见到过吗?生:比萨斜塔、治安岗亭、茶叶盒、客家围屋。师:今天这节课我们重点来研究这些物体。(二)探究新知 1. 认识圆柱。师:这些物体什么形状的?它们的形状有什么共同特点?生:这些物体都是圆柱形的。师小结:这些物体的形状都是圆柱体,简称圆柱。说一说生活中有哪些圆柱形的物体。2.探究圆柱的特特征。(1)认识底面小组活动: 观察圆柱形物体,看看它是有几部分组成的,有什么特征?课件演示:圆柱的上、下两个面叫做底面,是两个完全相同的圆。 师:请同学们量一量、算一算圆柱的两个底面有什么关系?生1:两个底面的直径相等、半径相等。生2:两个底面的周长相等、面积相等。师小结:圆柱的底面是两个完全相同的圆。(2)认识侧面课件演示:圆柱周围的面叫做侧面,侧面是一个曲面。师:请同学们指一指圆柱的侧面,再用手摸一摸,有什么感觉?生:侧面是弯曲的。师:侧面是一个曲面。
4.x的值是否可以任意取?如果不能任意取,请求出它的范围,[x的值不能任意取,其范围是0≤x≤2]5.若设该商品每天的利润为y元,求y与x的函数关系式。[y=(10-8-x) (100+100x)(0≤x≤2)]将函数关系式y=x(20-2x)(0 <x <10=化为:y=-2x2+20x (0<x<10)…(1)将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为:y=-100x2+100x+20D (0≤x≤2)…(2)三、观察;概括1.教师引导学生观察函数关系式(1)和(2),提出问题让学生思考回答;(1)函数关系式(1)和(2)的自变量各有几个? (各有1个)(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?(分别是二次多项式)(3)函数关系式(1)和(2)有什么共同特点? (都是用自变量的二次多项式来表示的)(4)本章导图中的问题以及P1页的问题2有什么共同特点?让学生讨论、归结为:自变量x为何值时,函数y取得最大值。2.二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数, a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.
(2)由题意可得-10x2+180x+400=1120,整理得x2-18x+72=0,解得x1=6,x2=12(舍去).所以,该产品的质量档次为第6档.方法总结:解决此类问题的关键是要吃透题意,确定变量,建立函数模型.变式训练:见《学练优》本课时练习“课后巩固提升”第8题三、板书设计二次函数1.二次函数的概念2.从实际问题中抽象出二次函数解析式二次函数是一种常见的函数,应用非常广泛,它是客观地反映现实世界中变量之间的数量关系和变化规律的一种非常重要的数学模型.许多实际问题往往可以归结为二次函数加以研究.本节课是学习二次函数的第一节课,通过实例引入二次函数的概念,并学习求一些简单的实际问题中二次函数的解析式.在教学中要重视二次函数概念的形成和建构,在概念的学习过程中,让学生体验从问题出发到列二次函数解析式的过程,体验用函数思想去描述、研究变量之间变化规律的意义.
方法总结:本题考查了幂的乘方的逆用及同底数幂的乘法,整体代入求解也比较关键.【类型三】 逆用幂的乘方结合方程思想求值已知221=8y+1,9y=3x-9,则代数式13x+12y的值为________.解析:由221=8y+1,9y=3x-9得221=23(y+1),32y=3x-9,则21=3(y+1),2y=x-9,解得x=21,y=6,故代数式13x+12y=7+3=10.故答案为10.方法总结:根据幂的乘方的逆运算进行转化得到x和y的方程组,求出x、y,再计算代数式.三、板书设计1.幂的乘方法则:幂的乘方,底数不变,指数相乘.即(am)n=amn(m,n都是正整数).2.幂的乘方的运用幂的乘方公式的探究方式和前节类似,因此在教学中可以利用该优势展开教学,在探究过程中可以进一步发挥学生的主动性,尽可能地让学生在已有知识的基础上,通过自主探究,获得幂的乘方运算的感性认识,进而理解运算法则
解析:(1)根据图象的纵坐标,可得比赛的路程.根据图象的横坐标,可得比赛的结果;(2)根据乙加速后行驶的路程除以加速后的时间,可得答案.解:(1)由纵坐标看出,这次龙舟赛的全程是1000米;由横坐标看出,乙队先到达终点;(2)由图象看出,相遇是在乙加速后,加速后的路程是1000-400=600(米),加速后用的时间是3.8-2.2=1.6(分钟),乙与甲相遇时乙的速度600÷1.6=375(米/分钟).方法总结:解决双图象问题时,正确识别图象,弄清楚两图象所代表的意义,从中挖掘有用的信息,明确实际意义.三、板书设计1.用折线型图象表示变量间关系2.根据折线型图象获取信息解决问题经历一般规律的探索过程,培养学生的抽象思维能力,经历从实际问题中得到关系式这一过程,提升学生的数学应用能力,使学生在探索过程中体验成功的喜悦,树立学习的自信心.体验生活中数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣
例1 解不等式x> x-2,并将其解集表示在数轴上.例2 解不等式组 .例3 小明放学回家后,问爸爸妈妈小牛队与太阳队篮球比赛的结果.爸爸说:“本场比赛太阳队的纳什比小牛队的特里多得了12分.”妈妈说:“特里得分的两倍与纳什得分的差大于10;纳什得分的两倍比特里得分的三倍还多.”爸爸又说:“如果特里得分超过20分,则小牛队赢;否则太阳队赢.”请你帮小明分析一下.究竟是哪个队赢了,本场比赛特里、纳什各得了多少分?例4 暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价均为每人500元的两家旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折收费;乙旅行社的优惠条件是家长、学生都按八折收费.假设这两位家长带领x名学生去旅游,他们应该选择哪家旅行社?
一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球,则下列事件是必然事件的是( )A.摸出的4个球中至少有一个是白球B.摸出的4个球中至少有一个是黑球C.摸出的4个球中至少有两个是黑球D.摸出的4个球中至少有两个是白球解析:∵袋子中只有3个白球,而有5个黑球,∴摸出的4个球可能都是黑球,因此选项A是不确定事件;摸出的4个球可能都是黑球,也可以3黑1白、2黑2白、1黑3白,不管哪种情况,至少有一个球是黑球,∴选项B是必然事件;摸出的4个球可能为1黑3白,∴选项C是不确定事件;摸出的4个球可能都是黑球或1白3黑,∴选项D是不确定事件.故选B.方法总结:事件类型的判断首先要判断该事件发生与否是不是确定的.若是确定的,再判断其是必然发生的(必然事件),还是必然不发生的(不可能事件).若是不确定的,则该事件是不确定事件.