本单元内容选至是八年级上册教材第三单元,在全书内容结构上起着承上启 下的作用。在了解社会生活和社会规则的基础上,本单元将进一步引导学生明确 社会责任,积极主动服务奉献社会。本单元是对第一单元、第二单元内容的深化。 本单元以“社会责任”为主题,基于学生可感知的社会生活,重点强调责任意识 和奉献精神的培养,使学生懂得因社会角色的差异而产生不同的责任,明确自身 应承担的社会责任,理解责任的承担和履行对个人、对社会的意义,培养学生的 责任意识。因此整个单元的核心任务是帮助学生认识到个人是社会的成员,社会 是由每个个体组成的。只有每个人承担责任,社会才能和谐发展;只有社会发展 了,才能为个人的成长提供良好的基础和条件。帮助学生理解承担责任的结果可 能会获得回报,也可能要付出一定的代价,懂得对自己的行为负责,使学生理性 对待承担责任过程中的得与失。引导学生感悟生活中无时无处不在的关爱,理解 关爱他人是一种幸福,同时也要讲究一定的艺术。引导学生思考服务和奉献的意 义,培养学生的服务意识和奉献精神。
(四) 作业分析与设计意图这是一项基于素质教育导向的活动式课时作业设计,以培育学生健全人格为 目标。作业以志愿者活动为作业形式,让学生以负责任为主题积极参与到对社会 负责的志愿者活动中去,并且通过参与志愿者活动,真正感受社会,提升社会责 任感,也让他们真正理解责任的意义,健全人格,提升道德修养,在以后的生活 中,可以更积极地帮助他人,为社会为国家做出自己应有的贡献。六、单元质量检测( 一) 单元质量内容1.“熊孩子”在电梯里小便,妈妈让孩子写了一份检讨,发到业主群里给大伙 道歉,每天由孩子的父亲监督孩子打扫电梯一个月。妈妈意在教育“熊孩子”要( )①明是非,懂规矩 ②有教养,尊他人 ③敢担当,勇负责 ④享权利,尽义 务A.①③④ B.①②③ C.①②④ D.②③④2.教师以教书育人为己任,快递员以顾客满意为追求,消防员以救人灭火为 目标,警察以维护秩序、护人安危为使命……社会的发展离不开每一个人的努力。这表明 ( )A.社会和谐稳定需要每个人承的担相应的责任
本单元是八年级上册教材的第三单元,在逻辑结构上起着承上启下的作用。从 学生发展的需要和当前学生思想现状出发,基于学生对责任、奉献等的理解和认知 状况,对其进行正确价值观的引导,有利于帮助学生更加主动地适应社会,实现个 人的全面发展。第六课“责任与角色同在”由引言和两框内容组成。引言概述了责任与角色的 关系以及承担责任对社会、民族和国家的意义,具有统领全课的作用。第一框“我 对谁负责,谁对我负责” ,主要是帮助学生了解什么是责任、责任的来源有哪些; 懂得在社会生活的舞台上,每个人都扮演着不同的角色,承担相应的责任;知道每 个人要对自己负责,也要对他人负责,同时其他人也在对自己负责。正是由于我们 每个人各负其责,个人才能获得充分发展,社会才能获得全面进步。第二框“做负 责任的人” ,主要是帮助学生认识到承担责任意味着要付出一定的代价,也会获得 回报,要学会作出合理的选择,并对自己的选择负责;对不是自愿选择但又必须做 的事要自觉承担、尽力做好,努力向履行社会责任却不言代价与回报的人学习。
2.内容内在逻辑本单元是人教八年级上册道德与法治学科第三单元的内容,在逻辑结构上起 着承上启下的作用,本单元包括两课四框内容。第六课“责任与角色同在”,两框分别是“我对谁负责 谁对我负责”、“做 负责任的人”:第一框“我对谁负责 谁对我负责”旨在引导学生学习社会责任,培养学生 责任意识,使学生认识到责任与角色同在,对自己的责任有明确的认识,增强责 任意识;能够随着角色的变换调整决策行为,能够对自己、对社会承担责任的人 心怀感激之情。第二框“做负责任的人”旨在让学生认识到承担责任意味着回报也意味着代价,要学会承担责任,更要为自己的选择负责,崇敬那些不言代价与回报且无私 奉献的人,努力做一个负责任的公民。第七课“积极奉献社会”,两框分别是“关爱他人”、“服务社会”。
2.内容内在逻辑本单元《责任与角色同在》重点在责任意识的培养,为培养学生服务社会的 精神做好铺垫。第一框“我对谁负责 谁对我负责”,是从“认识责任”的角度厘清责任的 相关知识,包含责任的含义、责任的来源、责任与角色的关系,使学生明确自身 应承担的责任,理解承担责任对个人和社会的意义。第二框“做负责任的人”,是在第一框“认识责任”的基础之上,进一步探 讨“承担责任”。引导学生认识到承担责任意味着要付出一定的代价,也会获得 回报,要学会合理选择并对自己的选择负责。对于不是自愿选择但又必须做的事 要自觉承担、尽力做好,努力向履行社会责任却不计得失的人学习。综合来看,第一框主要帮助学生从思想上认清责任的来源以及责任与角色的 关系,明确责任是相互的。要成为负责任的人,关键还是要落实到行动中。第二 框则进一步引导学生从行动上提高责任意识, 主动承担责任。两框内容是有机统 一的。
背景素材:北京师范大学团队发布了全国“区域教育质量健康体检”报告 考点考查:网络的利与弊、合理利用网络能力考查:调动和运用知识,论证和探究问题核心素养:公共参与(1) 第一步:本题的设问主体是教育部“禁入”的依据,联系网络对青少年的影响的 相关内容;第二步:有效信息:要求学生原则上不得将个人手机带入校园→从网络的利与弊、未 成年人缺乏控制能力和自我保护意识、沉迷网络的危害性等角度进行分析;第三步:组织答案。得分点:网络是把双刃剑,有利也有弊;未成年人身心发育尚不 成熟, 自我能力较弱,辨别是非和自我控制能力不强,更容易受到手机网络消极因素 的影响和不法侵害,需要给予特殊保护;这样做有利于避免未成年人沉迷于手机网络, 有利于未成年人专心学习,保护未成年人身心健康成长。(2) 本题考查对如何来合理利用网络的认识和理解,属于课本中基础知识的范畴,结 合相关课本知识进行回答。
(1)图片表现: 网络上信息很丰富。(2)面对网络海量的信息, 我们要注意浏览、寻找与学习和工作 有关的信息, 不应在无关信息面前停留, 不应在无聊信息是浪费精 力,更不可沉溺于网络,要学会“信息节食”10、某中学八年级 400 多名学生, 在田地里上了一堂生动有趣的劳 动体验实践课——插秧。据相关负责人介绍, 劳动体验实践课走进 田间地头, 可以丰富孩子们的课余生活, 拓展视野, 锻炼综合实践 能力。学生学插秧既可感受中华传统农耕文化的魅力, 体验农民劳 作的艰辛生活, 也让他们悟出“锄禾日当午, 汗滴禾下土”的真实 意义。(1)亲社会行为有哪些意义?(2)请列举两个你生活中的亲社会行为。(3) 中学生怎样才能养成亲社会行为?设计意图:本题设计意图在于结合实际事例, 引导学生对事例进行讨论, 分析, 促使学生能够理性对待,培养学生理论联系实际的能力参考答案:(1) 有利于我们养成良好的行为习惯,塑造健康的人格,形成正 确的价值观念,获得他人和社会的接纳与认可。(2) 当志愿者,参加公益活动。
(一) 单元质量检测内容一、单项选择题1.2021 年实施的《中华人民共和国民法典》第 183 条规定:“因保护他人民事权益使自己受到损害的, 由侵权人承担民事责任, 受益人可以给予适当补偿。没有 侵权人、侵权人逃逸或者无力承担民事责任, 受害人请求补偿的, 受益人应当给予 适当补偿。”这样的规定,有助于( )①弘扬真善美的行为 ②培养人们的亲社会行为③依法维护见义勇为者的合法权益 ④使身处危难之中的人们得到及时救助 A.①② B.②③④ C.①③④ D.①②③④ 2.宣城市宣州区疫情防控应急指挥部 7 月 26 日下午发布信息:7 月 26 日上午,一网友在名称为“宣城的士之声交流群”的微信聊天群中散布消息, 称宣城有一人 核酸检测呈阳性。经核查, 此为不实信息, 属于谣言, 公安机关已介入调查, 请广 大群众及时关注政府官方公告、信息, 以官方发布消息为准, 不造谣、不传谣、不 信谣。对此,网民应该( )①严厉打击制造、传播谣言的行为,让谣言止于智者②塑造批判性思维,对信息进行甄别,抵制不良信息③提高网络媒介素养,自觉践行社会主义核心价值观
问题二:上述问题中,甲、乙的平均数、中位数、众数相同,但二者的射击成绩存在差异,那么,如何度量这种差异呢?我们可以利用极差进行度量。根据上述数据计算得:甲的极差=10-4=6 乙的极差=9-5=4极差在一定程度上刻画了数据的离散程度。由极差发现甲的成绩波动范围比乙的大。但由于极差只使用了数据中最大、最小两个值的信息,所含的信息量很少。也就是说,极差度量出的差异误差较大。问题三:你还能想出其他刻画数据离散程度的办法吗?我们知道,如果射击的成绩很稳定,那么大多数的射击成绩离平均成绩不会太远;相反,如果射击的成绩波动幅度很大,那么大多数的射击成绩离平均成绩会比较远。因此,我们可以通过这两组射击成绩与它们的平均成绩的“平均距离”来度量成绩的波动幅度。
新知讲授(一)——古典概型 对随机事件发生可能性大小的度量(数值)称为事件的概率。我们将具有以上两个特征的试验称为古典概型试验,其数学模型称为古典概率模型,简称古典概型。即具有以下两个特征:1、有限性:样本空间的样本点只有有限个;2、等可能性:每个样本点发生的可能性相等。思考一:下面的随机试验是不是古典概型?(1)一个班级中有18名男生、22名女生。采用抽签的方式,从中随机选择一名学生,事件A=“抽到男生”(2)抛掷一枚质地均匀的硬币3次,事件B=“恰好一次正面朝上”(1)班级中共有40名学生,从中选择一名学生,即样本点是有限个;因为是随机选取的,所以选到每个学生的可能性都相等,因此这是一个古典概型。
新知探究:向量的减法运算定义问题四:你能根据实数的减法运算定义向量的减法运算吗?由两个向量和的定义已知 即任意向量与其相反向量的和是零向量。求两个向量差的运算叫做向量的减法。我们看到,向量的减法可以转化为向量的加法来进行:减去一个向量相当于加上这个向量的相反向量。即新知探究(二):向量减法的作图方法知识探究(三):向量减法的几何意义问题六:根据问题五,思考一下向量减法的几何意义是什么?问题七:非零共线向量怎样做减法运算? 问题八:非零共线向量怎样做减法运算?1.共线同向2.共线反向小试牛刀判一判(正确的打“√”,错误的打“×”)(1)两个向量的差仍是一个向量。 (√ )(2)向量的减法实质上是向量的加法的逆运算. ( √ )(3)向量a与向量b的差与向量b与向量a的差互为相反向量。 ( √ )(4)相反向量是共线向量。 ( √ )
可以通过下面的步骤计算一组n个数据的第p百分位数:第一步:按从小到大排列原始数据;第二步:计算i=n×p%;第三步:若i不是整数,而大于i的比邻整数位j,则第p百分位数为第j项数据;若i是整数,则第p百分位数为第i项与第i+1项的平均数。我们在初中学过的中位数,相当于是第50百分位数。在实际应用中,除了中位数外,常用的分位数还有第25百分位数,第75百分位数。这三个分位数把一组由小到大排列后的数据分成四等份,因此称为四分位数。其中第25百分位数也称为第一四分位数或下四分位数等,第75百分位数也称为第三四分位数或上四分位数等。另外,像第1百分位数,第5百分位数,第95百分位数,和第99百分位数在统计中也经常被使用。例2、根据下列样本数据,估计树人中学高一年级女生第25,50,75百分位数。
《数学1必修本(A版)》的第五章4.5.2用二分法求方程的近似解.本节课要求学生根据具体的函数图象能够借助计算机或信息技术工具计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法,从中体会函数与方程之间的联系;它既是本册书中的重点内容,又是对函数知识的拓展,既体现了函数在解方程中的重要应用,同时又为高中数学中函数与方程思想、数形结合思想、二分法的算法思想打下了基础,因此决定了它的重要地位.发展学生数学直观、数学抽象、逻辑推理和数学建模的核心素养。课程目标 学科素养1.通过具体实例理解二分法的概念及其使用条件.2.了解二分法是求方程近似解的常用方法,能借助计算器用二分法求方程的近似解.3.会用二分法求一个函数在给定区间内的零点,从而求得方程的近似解. a.数学抽象:二分法的概念;b.逻辑推理:运用二分法求近似解的原理;
9.例二:如图,AB∩α=B,A?α, ?a.直线AB与a具有怎样的位置关系?为什么?解:直线AB与a是异面直线。理由如下:若直线AB与a不是异面直线,则它们相交或平行,设它们确定的平面为β,则B∈β, 由于经过点B与直线a有且仅有一个平面α,因此平面平面α与β重合,从而 , 进而A∈α,这与A?α矛盾。所以直线AB与a是异面直线。补充说明:例二告诉我们一种判断异面直线的方法:与一个平面相交的直线和这个平面内不经过交点的直线是异面直线。10. 例3 已知a,b,c是三条直线,如果a与b是异面直线,b与c是异面直线,那么a与c有怎样的位置关系?并画图说明.解: 直线a与直线c的位置关系可以是平行、相交、异面.如图(1)(2)(3).总结:判定两条直线是异面直线的方法(1)定义法:由定义判断两条直线不可能在同一平面内.
1.圆柱、圆锥、圆台的表面积与多面体的表面积一样,圆柱、圆锥、圆台的表面积也是围成它的各个面的面积和。利用圆柱、圆锥、圆台的展开图如图,可以得到它们的表面积公式:2.思考1:圆柱、圆锥、圆台的表面积之间有什么关系?你能用圆柱、圆锥、圆台的结构特征来解释这种关系吗?3.练习一圆柱的一个底面积是S,侧面展开图是一个正方体,那么这个圆柱的侧面积是( )A 4πS B 2πS C πS D 4.练习二:如图所示,在边长为4的正三角形ABC中,E,F分别是AB,AC的中点,D为BC的中点,H,G分别是BD,CD的中点,若将正三角形ABC绕AD旋转180°,求阴影部分形成的几何体的表面积.5. 圆柱、圆锥、圆台的体积对于柱体、锥体、台体的体积公式的认识(1)等底、等高的两个柱体的体积相同.(2)等底、等高的圆锥和圆柱的体积之间的关系可以通过实验得出,等底、等高的圆柱的体积是圆锥的体积的3倍.
问题导入:问题一:试验1:分别抛掷两枚质地均匀的硬币,A=“第一枚硬币正面朝上”,B=“第二枚硬币正面朝上”。事件A的发生是否影响事件B的概率?因为两枚硬币分别抛掷,第一枚硬币的抛掷结果与第二枚硬币的抛掷结果互相不受影响,所以事件A发生与否不影响事件B发生的概率。问题二:计算试验1中的P(A),P(B),P(AB),你有什么发现?在该试验中,用1表示硬币“正面朝上”,用0表示“反面朝上”,则样本空间Ω={(1,1),(1,0),(0,1),(0,0)},包含4个等可能的样本点。而A={(1,1),(1,0)},B={(1,0),(0,0)}所以AB={(1,0)}由古典概率模型概率计算公式,得P(A)=P(B)=0.5,P(AB)=0.25, 于是 P(AB)=P(A)P(B)积事件AB的概率恰好等于事件A、B概率的乘积。问题三:试验2:一个袋子中装有标号分别是1,2,3,4的4个球,除标号外没有其他差异。
(2)平均数受数据中的极端值(2个95)影响较大,使平均数在估计总体时可靠性降低,10天的用水量有8天都在平均值以下。故用中位数来估计每天的用水量更合适。1、样本的数字特征:众数、中位数和平均数;2、用样本频率分布直方图估计样本的众数、中位数、平均数。(1)众数规定为频率分布直方图中最高矩形下端的中点;(2)中位数两边的直方图的面积相等;(3)频率分布直方图中每个小矩形的面积与小矩形底边中点的横坐标之积相加,就是样本数据的估值平均数。学生回顾本节课知识点,教师补充。 让学生掌握本节课知识点,并能够灵活运用。
提问:结合课本找出城市地域结构模式的类型及各自特点,模式形成的因素又有哪些?学生回答,使其掌握基本模式及特点,通过对比,分析把握每一模式各自的特征,学会把握事物本质。◆设计意图:阅读课本,总结归纳,同时引导,通过原因规律的探究,大胆设想,总结规律掌握人文地理学习思路。4.活动设计:内部空间结构变化,结合实例,分析说明。提问:结合江宁区的变化,分析江宁区城市结构发生了哪些变化?结合课本24页活动题,提出功能结构布局方案?通过理论联系实际,让学生更好理解理论,掌握城市结构布局的变化及其影响因素,通过活动题方案的提出,学生能够掌握布局的规律性,解决问题。设计意图:理论联系实际,知识的不枯燥性,提高学生学习兴趣。同时,能够通过总结,深层次认识城市结构布局,活学活用。
②内燃机的发明推动了交通运输领域的革新。19世纪末,新型的交通工具——汽车出现了。1885年,德国人卡尔·本茨成功地制成了第一辆用汽油内燃机驱动的汽车。1896年,美国人亨利·福特制造出他的第一辆四轮汽车。与此同时,许多国家都开始建立汽车工业。随后,以内燃机为动力的内燃机车、远洋轮船、飞机等也不断涌现出来。1903年,美国人莱特兄弟制造的飞机试飞成功,实现了人类翱翔天空的梦想,预告了交通运输新纪元的到来。③内燃机的发明推动了石油开采业的发展和石油化学工业的产生。石油也像电力一样成为一种极为重要的新能源。1870年,全世界开采的石油只有80万吨,到1900年猛增至2 000万吨。(3)化学工业的发展:①无机化学工业:用化学反应的方式开始从煤焦油中提炼氨、笨、等,用化学合成的方式,美国人发明了塑料,法国人发明了纤维,瑞典人发明了炸药等。
一、教材分析(一)说本框题的地位与作用《树立创新意识是唯物辩证法的要求》是人教版教材高二《生活与哲学》第三单元第十课的第一框题,该部分的内容实质上是在阐述辩证法的革命批判精神和否定之否定规律。是第三单元思想方法与创新意识》的重点和核心之一。学好这部分的知识对于学生进一步理解辩证法的思维方法,树立创新意识起着重要的作用。(二)说教学目标根据课程标准和课改精神,在教学中确定如下三维目标:1、知识目标:辩证否定观的内涵,辩证法的本质。辩证否定是自我否定,辩证否定观与书本知识和权威思想的关系,辩证法的革命批判精神与创新意识的关系,分析辩证否定的实质是"扬弃",是既肯定又否定;既克服又保留。深刻理解辩证法的革命批判精神,分析为什么辩证法的革命批判精神同创新意识息息相关。