1、互逆命题:在两个命题中,如果第一个命题的条件是第二个命题的 ,而第一个命题的结论是第二个命题的 ,那么这两个命题互逆命题,如果把其中一个命题叫做原命题,那么另一个命题叫做它的 .2、互逆定理:如果一个定理的逆命题也是 ,那么这个逆命题就是原来定理的逆定理.注意(1):逆命题、互逆命题不一定是真命题,但逆定理、互逆定理,一定是真命题.(2):不是所有的定理都有逆定理.自主学习诊断:如图所示:(1)若∠A= ,则AC∥ED,( ).(2)若∠EDB= ,则AC∥ED,( ).(3)若∠A+ =1800,则AB∥FD,( ).(4)若∠A+ =1800,则AC∥ED,( ).
第一条 技术名称、资料1.技术名称、权属: 2.“技术文件资料”的定义、范围及交付: (1)一般技术资料包括: (2)产品设计图纸: (3)生产技术资料: (4)资料的修改: (5)资料的提供方式: a.对一般技术文件应提供三份蓝图或同等数量的清晰的复制图;b.对产品设计图纸应提供一份生产底图及两份蓝图;c.对生产技术资料应提供两份蓝图;d.对已提供过的完全相同的重复资料,可免于提供,但需在清单中予以注明。(6)资料的交付进度: a.根据资料定义的规定,在签订合同后30天需交付合同产品的全部技术资料和图纸;b.根据资料定义的规定,在签订合同后于 年 月 日前需向 交付合同产品的全部技术资料和图纸。第二条 合作期限1.以补偿贸易进行使用生产期限为2年,2年后若合资经营条件不成熟,则可延长合作生产期限,但最长不得超过5年。
一、对教材内容的处理根据新课程标准的要求、知识的跨度、学生的认知水平,我对教材内容有增有减。二、教学策略的选用(一)运用了模拟活动,强化学生的生活体验,本框题知识所对应的经济现象,学生已具有了一定的生活体验,但是缺乏对这种体验的深入思考。因此在进一步强化这种体验的过程中进行了思考和认知,使知识从学生的生活体验中来,从学生的思考探究中来,有助于提高学生的兴趣,有助于充分调动学生现有的知识,培养学生的各种能力,也有助于实现理论知识与实际生活的交融。(二)组织学生探究知识并形成新的知识我从学生的生活体验入手,运用案例等形式创设情境呈现问题,使学生在自主探索、合作交流的过程中,发现问题、分析问题、解决问题,在问题的分析与解决中主动构建知识。也正是由于这些认识来自于学生自身的体验,因此学生不仅“懂”了,而且“信”了。从内心上认同这些观点,进而能够主动地内化为自己的情感、态度、价值观,并融入到实践活动中去,有助于实现知、行、信的统一。
(3)人民币外汇牌价:我国通常采用100单位外币作为标准,折算为一定数量的人民币。如果用100单位外币可以兑换更多的人民币,说明外汇汇率升高;反之,则说明外汇汇率跌落。教师活动:大家知道汇率是经常变动的,为什么汇率经常变动?我国在美国、日本等国再三施加压力的情况下,为什么保持汇率稳定,人民币不升值?学生活动:学生就老师提出的问题去阅读教材;然后展开讨论,并回答(4)保持人民币币值稳定的意义教师点评:影响汇率变动的因素主要有:外汇的供求关系、通货膨胀(或紧缩)率的差异、经济增长率、利率水平、国家货币当局的干预与管制、市场预期、外汇投机活动等。外汇在国家经济发展和国际贸易中具有重要的作用:通过汇率的升降调节进出口贸易;可以影响国际资本的流动方向和数量;可以影响国内物价水平;影响外汇储备的实际价值等。
(二)加强学校民主政治建设,深化学校民主管理工作 学校民主政治建设是实行校务公开维护教职工的切身利益保证。为此,我们在新这一学期中要配合学校行政继续做好校务公开这方面的工作,从源头上维护教职工合法权益。让教职工知情,让教职工参与是实现广大教职工当家作主的体现、参与民主决策、民主管理、民主监督是民主权利,也是学校改革发展和稳定的重要保证。推动教职工对学校事务的关心,増强他们的主人翁的意识,在工作上注重凝聚力工程,发挥我们工会桥梁纽带作用,使工会组织真正成为教职工理想的“家”,建立和谐校园。
1、加强教代会自身建设,定期召开教代会,认真落实教代会的各项决议,充分发挥教代会和全体教职工的作用,督促学校对教代会提出的提案予以落实和执行。定期组织教代会代表学习,提高教代会代表参政、议政能力。切实保障教职工在教育改革和发展中享有知情权、参与权、决策权和监督权,认真维护和保障教职工的合法权益,支持学校依法行政。
二、指导思想 让学生巩固初中阶段思想品德课程的重要知识内容,能够较灵活的应用和理解所学的知识,学会考试的一些方法和技巧,有效的提高学生应考能力。教研组教师精诚团结、取长补短、资源共享、注重实效,以集体的力量确保学科优势。
1、做好“有效教学语言”课题的结题工作,进行省级“xxx”课题的深入研究工作。 2、加强课题研究与教研活动的整合,做实校本教研。 3、进一步规范制度管理,积极营造学校教科研文化,正确认识教科研价值。 4、进行xx市第x批微型课题研究工作。 5、认真组织教师参加各级各类教科研培训,积极拓展渠道,帮助教师在各级各类报刊上发表文章。高度重视教科研成果的总结、提炼与推广。
1.导师聘任制度。德育导师实行动态管理,一般一学年一聘。 2.档案制度。为每位受导学生建立档案,内容包括学生家庭,学生道德品质、心理健康和学业跟踪档案,对学生表现、考试成绩等逐一记录,分析对照,绘制学生学业变化曲线。 3.家访联络制度。建立定期家长接待日制度和不定期的家访联络制度,导师经常与家长联系,指导家庭教育,共商教育之策。
二、 工作重点 树立学生的学习理想,明确人生价值;明确学习目的,面向全体,偏爱差生。严抓纪律,搞好班风。建设以班风促进学风;做好控流工作,培养负责、肯干的班干部和学科带头人。 三、教学目标 坚持规范学生的日常行为,积极开展德育工作,有计划有目的地结合学校的主题,开展有特色的班务管理,现制定有目的如下:⑴加强学生前途理想教育,树立明确的学习目标;⑵认清责任,巩固学生学习成绩,确立个人学期目标,以养成良好的行为习惯和学习习惯为基本要求;⑶加强师生沟通,了解学生的思想动向及时排除并引导其向正确方向发展;⑷探讨学习方法,培养良好的学习心态;⑸量化目标:①能在校赛上取得2~3次成绩,②获取8~10次文明班,1~2次文明课室。③能获先进班集体。
本节内容是三角恒等变形的基础,是正弦线、余弦线和诱导公式等知识的延伸,同时,它又是两角和、差、倍、半角等公式的“源头”。两角和与差的正弦、余弦、正切是本章的重要内容,对于三角变换、三角恒等式的证明和三角函数式的化简、求值等三角问题的解决有着重要的支撑作用。 课程目标1、能够推导出两角和与差的正弦、余弦、正切公式并能应用; 2、掌握二倍角公式及变形公式,能灵活运用二倍角公式解决有关的化简、求值、证明问题.数学学科素养1.数学抽象:两角和与差的正弦、余弦和正切公式; 2.逻辑推理: 运用公式解决基本三角函数式的化简、证明等问题;3.数学运算:运用公式解决基本三角函数式求值问题.4.数学建模:学生体会到一般与特殊,换元等数学思想在三角恒等变换中的作用。.
本节课选自《普通高中课程标准实验教科书数学必修1本(A版)》第五章的5.5.1 两角和与差的正弦、余弦和正切公式。本节的主要内容是由两角差的余弦公式的推导,运用诱导公式、同角三角函数的基本关系和代数变形,得到其它的和差角公式。让学生感受数形结合及转化的思想方法。发展学生数学直观、数学抽象、逻辑推理、数学建模的核心素养。课程目标 学科素养1.了解两角差的余弦公式的推导过程.2.掌握由两角差的余弦公式推导出两角和的余弦公式及两角和与差的正弦、正切公式.3.熟悉两角和与差的正弦、余弦、正切公式的灵活运用,了解公式的正用、逆用以及角的变换的常用方法.4.通过正切函数图像与性质的探究,培养学生数形结合和类比的思想方法。 a.数学抽象:公式的推导;b.逻辑推理:公式之间的联系;c.数学运算:运用和差角角公式求值;d.直观想象:两角差的余弦公式的推导;e.数学建模:公式的灵活运用;
地质年代可分为相对年代和绝 对年龄(或同位素年龄)两种。相对地质年代是指岩石和地层之间的相对新老关系和它们的时代顺序。地质学家和古生物学家根据地层自然形成的先后顺序,将地层分为5代12纪。即早期的太古代和元古代(元古代 在中国含有1个震旦纪),以后的古生代、中生代和新生代。古生代分为寒武纪、奥陶纪、志留纪、泥盆纪、石炭纪和二叠纪,共7个纪;中生代分为三叠纪、侏罗纪和白垩纪,共3个纪;新生代只有第三纪、第四纪两个纪。在各个不同时期的地层里,大都保存有古代动、植物的标准化石。各类动、植物化石出现的早晚是有一定顺序的,越是低等的,出现得越早,越是高等的,出现得越晚。绝对年龄是根据测出岩石中某种放射性元素及其蜕变产物的含量而计算出岩石的生成后距今的实际年 数。越是老的岩石,地层距今的年数越长。
老师们、同学们:大家早上好!今天我讲话的题目是《珍惜和平 捍卫和平》。9月21日是“国际和平日” ,在联合国的会徽上画着和平鸽和金色的橄榄枝,它们都代表着和平,象征着和平,但你们知道它的来历吗?《新约全书》里有这么一个故事:一天,上帝告诉诺亚:洪水快来了,诺亚赶紧和他的儿子造了一艘大船,叫做方舟。当洪水漫来的时候,诺亚一家登上了方舟,而且把许许多多动物也带上了船,方舟在波涛汹涌的水上飘荡了好些日子。终于雨停了,诺亚放出鸽子打探情报,不久,鸽子飞回来了,嘴里衔了一片新摘下来的橄榄枝叶,诺亚知道洪水已开始退去,平安就要来到。从此,人们就用鸽子和橄榄枝来象征和平。神话寄托了人们茶余饭后的无尽遐思,但渴望和平确实是全世界人民的美好心愿,社会的发展需要和平,我们的生活也需要和平,可是,树欲静而风不止,现在,我们生活的世界并不安宁,令人关注的“南海争端”,形势严峻的“鱼岛事件”正在侵犯着中国的领土和尊严,破坏着世界的和平和稳定。
师:改革开放后,乔家依然是生意兴隆,财源广进。下面我们来看一下他们乘坐另一种交通工具。(画外音响起,男中音用缓慢、低沉的语调朗诵;幻灯片展示)(七)乔致庸1905年来到上海,腰缠万贯的他坐上了行驶在柏油公路上的“四轮子”。可惜的是,此后的四十年,中国也没有多少柏油路和“四轮子”.直到50年后,四轮子和“柏油路”才多了起来。“四轮子”是什么?为什么“此后的四十年,中国也没有多少柏油路和四轮子”?为什么“直到50年后,四轮子和“柏油路”才多了起来”?生:略师:20世纪初,汽车开始出现在上海。因为旧中国政治腐败、民生凋敝。新中国成立后有了自己的汽车制造厂,比如说一汽、二汽。解放后,我们的汽车产业蒸蒸日上。(展示材料)屏幕显示:1956年,长春第一汽车制造厂生产出第一批 “解放牌”载重汽车,标志着中国汽车工业的诞生。2009年我国汽车工业取得了全球瞩目的成绩,首次超过美国,成为全球产销量第一的国家。
★教后记:历史教学的最高目标不是单纯的记忆和培养能力,而是树立正确的历史观,培养学生的历史责任感。从这一点讲,新课标及新课标教材给老师极大的发挥空间,摆脱了以往的“教教材”,真正实现了 “用教材教”,只有这样,教师才不只是一个“备课”的“教书匠”,而是一名设计教学“设计师”,以教材为砖瓦,建造有自己独特风格的教育大厦。这是我设计教学的出发点。开放式的课堂需要思想开放的教师,但对教师的课堂驾驭能力要求更高,否则“一放就活,一活就乱”,只求课堂热闹,热闹过后,学生一无所获,那么这样的开放课堂依然是失败的。开放式的课堂并不是任由学生说,教师必要的引导与客观的评价尤为重要。★问题解答⊙【学思之窗】请谈谈,火车机车的不断改进,给国民经济发展、百姓生活带来怎样的影响?答案提示:运输量大,有利于各地区的物资交流和劳动力流动,促进经济发展;交通便利快捷;机车内部环境舒适,给百姓出行带来方便。
本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.4.2节《对数函数的图像和性质》 是高中数学在指数函数之后的重要初等函数之一。对数函数与指数函数联系密切,无论是研究的思想方法方法还是图像及性质,都有其共通之处。相较于指数函数,对数函数的图象亦有其独特的美感。在类比推理的过程中,感受图像的变化,认识变化的规律,这是提高学生直观想象能力的一个重要的过程。为之后学习数学提供了更多角度的分析方法。培养和发展学生逻辑推理、数学直观、数学抽象、和数学建模的核心素养。1、掌握对数函数的图像和性质;能利用对数函数的图像与性质来解决简单问题;2、经过探究对数函数的图像和性质,对数函数与指数函数图像之间的联系,对数函数内部的的联系。培养学生观察问题、分析问题和归纳问题的思维能力以及数学交流能力;渗透类比等基本数学思想方法。
新知讲授(一)——古典概型 对随机事件发生可能性大小的度量(数值)称为事件的概率。我们将具有以上两个特征的试验称为古典概型试验,其数学模型称为古典概率模型,简称古典概型。即具有以下两个特征:1、有限性:样本空间的样本点只有有限个;2、等可能性:每个样本点发生的可能性相等。思考一:下面的随机试验是不是古典概型?(1)一个班级中有18名男生、22名女生。采用抽签的方式,从中随机选择一名学生,事件A=“抽到男生”(2)抛掷一枚质地均匀的硬币3次,事件B=“恰好一次正面朝上”(1)班级中共有40名学生,从中选择一名学生,即样本点是有限个;因为是随机选取的,所以选到每个学生的可能性都相等,因此这是一个古典概型。
1.圆柱、圆锥、圆台的表面积与多面体的表面积一样,圆柱、圆锥、圆台的表面积也是围成它的各个面的面积和。利用圆柱、圆锥、圆台的展开图如图,可以得到它们的表面积公式:2.思考1:圆柱、圆锥、圆台的表面积之间有什么关系?你能用圆柱、圆锥、圆台的结构特征来解释这种关系吗?3.练习一圆柱的一个底面积是S,侧面展开图是一个正方体,那么这个圆柱的侧面积是( )A 4πS B 2πS C πS D 4.练习二:如图所示,在边长为4的正三角形ABC中,E,F分别是AB,AC的中点,D为BC的中点,H,G分别是BD,CD的中点,若将正三角形ABC绕AD旋转180°,求阴影部分形成的几何体的表面积.5. 圆柱、圆锥、圆台的体积对于柱体、锥体、台体的体积公式的认识(1)等底、等高的两个柱体的体积相同.(2)等底、等高的圆锥和圆柱的体积之间的关系可以通过实验得出,等底、等高的圆柱的体积是圆锥的体积的3倍.
高斯(Gauss,1777-1855),德国数学家,近代数学的奠基者之一. 他在天文学、大地测量学、磁学、光学等领域都做出过杰出贡献. 问题1:为什么1+100=2+99=…=50+51呢?这是巧合吗?试从数列角度给出解释.高斯的算法:(1+100)+(2+99)+…+(50+51)= 101×50=5050高斯的算法实际上解决了求等差数列:1,2,3,…,n,"… " 前100项的和问题.等差数列中,下标和相等的两项和相等.设 an=n,则 a1=1,a2=2,a3=3,…如果数列{an} 是等差数列,p,q,s,t∈N*,且 p+q=s+t,则 ap+aq=as+at 可得:a_1+a_100=a_2+a_99=?=a_50+a_51问题2: 你能用上述方法计算1+2+3+… +101吗?问题3: 你能计算1+2+3+… +n吗?需要对项数的奇偶进行分类讨论.当n为偶数时, S_n=(1+n)+[(2+(n-1)]+?+[(n/2+(n/2-1)]=(1+n)+(1+n)…+(1+n)=n/2 (1+n) =(n(1+n))/2当n为奇数数时, n-1为偶数