人格是最高的学位中华民族自古以来都推崇高尚的人格,孔子之仁,孟子独善其身,陶潜不为五斗米而折腰,文天祥留取丹心照汗清------大凡古之圣人,皆有高尚的人格。人格伴随我们一生,一路前行,我们可曾思考做人!曾听说这样一个故事,一位年轻人去请教上世纪最伟大的大提琴家卡萨尔斯成功之道,面对满腹激情的年轻人,他只言简意赅地回答:先成为优秀而大写的人,然后成为一名优秀而大写的音乐人,而后就会成为一名优秀大提琴家!对学做人是人生观的基础,无论从事音乐、文学、科技、艺术,乃至做一个平凡极致的人。那些惊世骇俗的大师们,有谁不拥有崇高的人格呢?世纪老人冰心,已临近人生的终点,心中依然牵挂着年老病人的状况;国学大师季羡林身为副校长,为新生看行李,尽职尽责,直至学生归来,已近一个小时,大作家沈从文,一生醉心于人性美------,我们喜欢大师们的作品,却有谁能透过字里行间,窥探大师们的人格?
老师们、同学们:大家好!今天我演讲的题目是《专心致志,做学习的主人》。满怀着憧憬和希望,我们开始了新学期,这是一个能让我们实现理想,见证成长的一个学期。然而,激越澎湃之后,随之而来的却不尽是欢声与笑语,学习上虽然有着快乐,却已不再轻松,面对着一个个强手,看着他们的出类拔萃和独立张扬的个性,你或许自卑,或许哀叹,甚至怨恨自己的不争,但是,千万不要放弃,要坚信,只要有付出,就一定会有回报。随着新课改的全面展开,和xx、xx年高考新方案的公布,学习和生活都向我们敞开了新天地,也给了我们更多的挑战。每一位同学都要随时根据阶段考试的结果,和老师们的指导适时进行调整,不要自以为是,只埋头学习,不明确方向。这就要求我们要从现在起:首先,要养成上课积极思考,踊跃表达,质疑问难的良好习惯,只有这样,大家集思广益,相互交流,不仅有立于打破狭隘的思维界限,拓宽四位空间,而且还能增强相互合作和交流的能力。
学会做人同学们:联合国21世纪教育委员会提出21世纪教育的四大支柱,即学会求知、学会做事、学会共处、学会做人,学会做人是四大支柱的关键和核心,也是教育的目的和根本。学会做人,这是我们每个人都要面对的问题。不管一个人有多少知识,有多少财富,如果不懂得做人的道理,这个人最终不会获得真正的成功和幸福。希特勒、成克杰、胡大海,他们有知识、有财富、有地位,单他们不懂得做人的道理,最终成为历史的罪人。在新千年到来之际,西方人在评选20世纪最伟大的思想家时,把马克思排在了首位。他的思想和人格魅力永远鼓舞着一代又一代人。是盒子,埋在哪里都不会失去价值;是粪土,再张扬也逃不掉被唾弃的下场。人,从本质上讲,是社会的人。做人,在不同的国家,同一国家的不同历史时期,都被赋予不同的内容和色彩。因此,学会做人,离不开现实社会。
尊敬的各位老师、亲爱的同学们:大家早上好!我今天国旗下讲话的题目是《强健体魄,为美好人生奠基》,第一次听到“为祖国健康工作五十年”这句话的时候,我还不太明白这看似浅显的语言真正的用意,后来知道这是清华大学一句著名的口号,它旨在激发年轻学子强身健体的意识。当然,我们不是清华的学子,也还没有面对诸如“为祖国健康工作五十年”这样豪迈的目标,但拥有强健的身体却是每个人的心愿。只是,或许因为我们天生承受了上苍的厚爱,在神奇的生命构造中,我们拥有身体的全部构件,以没有缺憾的身躯享受阳光雨露,我们可以轻松行走甚至健步如飞,但这样伟大的恩赐却被当作理所当然的拥有,很多人会以这样那样的理由拒绝锻炼。是的,我们有太多的事要完成,有太多的理想要实现,但是,我们的青春真的精贵到没有时间去呵护自己的身体吗?我总是觉得,精神是理想主义,而身体是现实主义,那个广为流传的说法告诉我们,身体是1,其它财富是0,没有1,后面再多的0都没有意义。只是,对于有些人来说,他只是拥有了健全的四肢,而非健康的身体。
(四)、成果交流教师出示成熟植物细胞图,提出原生质层的概念,小组交流,教师点拨,得出结论:1、原生质层相当于半透膜2、外界溶液浓度大于细胞液浓度---细胞失水(质壁分离)3、外界溶液浓度小于细胞液浓度---细胞失水(质壁分离复原)教师出示有关细胞选择性吸收离子的数据资料。引导学生发现并探究出不同植物对同一离子吸收量不同,同一植物对不同离子吸收量也不同,得出结论:4、细胞膜具有选择透过性(五)拓展延伸如何用已有知识和技能鉴别两种蔗糖溶液浓度的大小?用0.1g/mg 0.8g/mg的蔗糖溶液分别做前面的探究实验会有什么不同的结果?你得出的结论是什么?引导学生总结出发生质壁分离和质壁分离复原的条件。五、板书设计好的板书就像一份微型教案,此板书力图全面而简明的将授课内容传递给学生,清晰直观,便于学生理解和记忆,理清文章脉络。
(设计意图: 通过这两个问题探究的形式可以了解学生对二、干旱为主的自然特征这一知识点的掌握情况,随堂练习有利于巩固强化学生的条例性知识。)三、荒漠化的成因1、自然因素:干旱、气候异常2、人为因素:(是荒漠化发生、发展的决定因素)自然原因启发学生利用已经学过的知识(干旱为主的自然特征)和给出的PPT资料来进行分析。人为原因以其危害结果用图表和图片的形式展示,使学生认识到人为因素是导致荒漠化最主要的因素。(设计意图:通过分析自然因素提供学生分析一区域环境建设的自然基础条件,而这也是较难的一点,再者,通过分析人为原因,是学生树立区域生态环境保护意识。)四、布置作业:书本课本20—22的活动—— 非洲萨赫勒地区荒漠化的自然、社会经济
【情感态度及价值观】 通过创设探究情境,展示典型显示案例激发思考,与学生共同感受当前区域经济一体化与经济全球化浪潮的冲击,以及当前我国、我省发展的机遇、成就和危机,培养学生的时代感和使命感。五、重点难点【重点】1、产业转移的影响因素2、产业转移对区域地理环境的影响【难点】1、如何从图文材料中分析出影响产业转移的主要因素2、产业转移对产业迁出区和移入区的不同影响六、教学方法1、材料分析法。提供分层次的问题与材料,并进行方法指导,学生通过思考和讨论自行分析发现知识、构建知识。使不同层次的学生均有发展。这是本节设计主要采用的教学方法。2、合作探究法3、多媒体教学法七、 教学过程(一) 引入 :假如某同学买彩票中大奖,想投资生产面临几项选择1、投资高端智能手机制造还是普通服装厂?2、厂址选择在濮阳市还是南乐县?
(二)能力目标培养学生运用哲学理论观察、分析、处理社会问题的能力,增强学生的时代感。(三)情感、态度与价值观目标培养学生与时俱进的思想品质,让学生关注时代、关注现实、关注生活,逐步树立科学的世界观、人生观、价值观。三、说教学重难点:时代精神的总结和升华是本框的难点,虽然学生在文化生活中学习了文化与经济政治的关系,但要让学生得出哲学是时代精神的总结和升华,还要联系前面关于哲学的基础知识进行总结归纳,因此可能会难以把握,另外关于什么样的哲学是真正的哲学的理解会稍有难度。社会变革的先导是本框的重点,一方面哲学源于时代,另一方面强调哲学反过来对时代又有重要的反作用,突出这一点能够更好地激发学生学习哲学的热情和信心,对于后面知识的学习是极为有益的,因此社会变革的先导这一目作重点处理。
一、说教材《新年的礼物》是一年级上册《道德与法治》第四单元、第十六课,本课主要通过活动与学习,让学生懂得在自己成长的过程中,收获是什么、收获从哪里来、学会感恩以及教给学生规划新年的期望和心愿。课文分为三大部分,第一部分是新年的收获,主要通过课本上的图片让学生了解什么是收获。第二部分是收获哪里来,主要通过自我的努力和外部因素的帮助,来了解收获的途径。第三部分是新年的心愿,让学生在动手动脑制作贺卡的同时,扩展思维,训练能力。二、说学情通过快一学期的学习,孩子们懂得了自己的事自己做,但对于“收获”的理解还不是很明晰,如何规划新年的期望和心愿,还急需教师的正确引导。三、教学目标:1.通过了解新年的收获,为自己和同学的成长感到快乐,乐观积极地面对生活。2.通过分享交流新年的收获途径,进一步认识自己,了解同学。3.知道自己的进步离不开许多人的帮助,学会感恩。
尊敬的校领导、老师、同学们:今天我在这庄严的五星红旗下,代表121班讲话,我今天所讲的题目是《语言美,春风化雨润心田》。说话文明,举止文雅,是中华民族的传统美德。一个人,如果能够出口成章,滔滔不绝,语重心长又能催人奋发,就不仅展示了他深厚的文化功底,更体现了他高尚的品德素养。一句温暖的话语,一个体贴的眼神,看似微不足道,实则意义深远。孔子曾说过不学礼,无以立。我国是一个有着悠久历史的文明古国,具有礼仪之邦的美称。文明礼貌并非是个人生活的小事,而是一个国家社会风尚的真实反映,是一个民族道德素质水平和精神文明程度的标志.每个人从他来到这个世界的那一刻起,就需要别人的爱抚、安慰、体谅、关怀和相互帮助,都渴望真诚友情和相互帮助.当我们快乐时,需要和别人分享,有痛苦烦恼时,需要向别人倾诉
问题6:观察刚才所画的图象我们发现反比例函数的图象有两个分支,那么它的分布情况又是怎么样的呢?在这一环节中的设计:(1) 引导学生对比正比例函数图象的分布,启发他们主动探索反比例函数的分布情况,给学生充分考虑的时间;(2) 充分运用多媒体的优势进行教学,使用函数图象的课件试着任意输入几个k的值,观察函数图象的不同分布,观察函数图象的动态演变过程。把不同的函数图象集中到一个屏幕中,便于学生对比和探究。学生通过观察及对比,对反比例函数图象的分布与k的关系有一个直观的了解;(3) 组织小组讨论来归纳出反比例函数的一条性质:当k>0时,函数图象的两支分别在第一、三象限内;当k<0时,函数图象的两支分别在第二、四象限内。
三、达标测试这一环节,我共设计了5道题,题型有选择、填空、解答。这些题都来自于课后习题,是课后习题的重组和整合,能够很好地考查学生对本节课的掌握情况。这一环节设计以多变的题型呈现,总体还是以基础题为主,以课后习题为主要内容设计,可把课后习题改编成填空、选择、计算、解答、证明等。这些题的设计要有典性、代表性,要紧跟时代步伐。80%-90%的学生能做全对,题量不能超过6道题。学生答题时间不能超过8分钟。四、拓展延伸这一环节以综合运用推论的一道计算题呈现的。旨在让学生在课后巩固对推论的理解,另一方面也为后面学习相似三角形做铺垫。以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,使课堂效益达到最佳状态。
设计思路如下:1、首先以“百宝箱“引出操作材料,激发幼儿探索操作的兴趣。2、分组操作,以比赛的形式得出结论:螺丝作为固定连接物体的材料最方便、结实。3、通过自由玩螺丝,引导幼儿发现螺丝在匹配的情况下才能很好的固定连接物体。4、通过自由摆弄一些带有螺纹的物品,引导幼儿了解螺丝原理在现实生活中的广泛应用。【活动目标】1、认识螺丝,知道螺丝由螺杆和螺帽组成。螺杆和螺帽在匹配的情况下,可以连接、固定物体。2、了解螺丝旋转上升的特性。3、通过操作活动,培养幼儿的科学兴趣,以及观察分析的能力。4、了解螺丝原理在生活中的广泛应用。
环境创设:1、幼儿和家长共同收集各种高低、宽窄不同的盒子。 2、软球、画有怪兽的横幅。 观察指导: 1、幼儿扮演小猴,活动身体,模仿小猴抓痒理毛、东跑西跑、摘桃捡桃等动作。 2、自由玩纸盒。 幼儿自由选择纸盒进行玩耍。 引导语:“每只小猴拿一个盒子,找一个空的地方玩。” 交流各自玩盒子的方法。 3、小猴过河 幼儿探索练习助跑跨越跳的方法。 引导语:“跑跑跑,一只脚用力跨过去,不要碰到你的盒子。” 尝试在不同高度、宽度的纸盒上跨跳。
4.有8种不同的菜种,任选4种种在不同土质的4块地里,有 种不同的种法. 解析:将4块不同土质的地看作4个不同的位置,从8种不同的菜种中任选4种种在4块不同土质的地里,则本题即为从8个不同元素中任选4个元素的排列问题,所以不同的种法共有A_8^4 =8×7×6×5=1 680(种).答案:1 6805.用1、2、3、4、5、6、7这7个数字组成没有重复数字的四位数.(1)这些四位数中偶数有多少个?能被5整除的有多少个?(2)这些四位数中大于6 500的有多少个?解:(1)偶数的个位数只能是2、4、6,有A_3^1种排法,其他位上有A_6^3种排法,由分步乘法计数原理,知共有四位偶数A_3^1·A_6^3=360(个);能被5整除的数个位必须是5,故有A_6^3=120(个).(2)最高位上是7时大于6 500,有A_6^3种,最高位上是6时,百位上只能是7或5,故有2×A_5^2种.由分类加法计数原理知,这些四位数中大于6 500的共有A_6^3+2×A_5^2=160(个).
2.某小组有20名射手,其中1,2,3,4级射手分别为2,6,9,3名.又若选1,2,3,4级射手参加比赛,则在比赛中射中目标的概率分别为0.85,0.64,0.45,0.32,今随机选一人参加比赛,则该小组比赛中射中目标的概率为________. 【解析】设B表示“该小组比赛中射中目标”,Ai(i=1,2,3,4)表示“选i级射手参加比赛”,则P(B)= P(Ai)P(B|Ai)= 2/20×0.85+ 6/20 ×0.64+ 9/20×0.45+ 3/20×0.32=0.527 5.答案:0.527 53.两批相同的产品各有12件和10件,每批产品中各有1件废品,现在先从第1批产品中任取1件放入第2批中,然后从第2批中任取1件,则取到废品的概率为________. 【解析】设A表示“取到废品”,B表示“从第1批中取到废品”,有P(B)= 112,P(A|B)= 2/11 ,P(A| )= 1/11所以P(A)=P(B)P(A|B)+P( )P(A| )4.有一批同一型号的产品,已知其中由一厂生产的占 30%, 二厂生产的占 50% , 三厂生产的占 20%, 又知这三个厂的产品次品率分别为2% , 1%, 1%,问从这批产品中任取一件是次品的概率是多少?
3.某县农民月均收入服从N(500,202)的正态分布,则此县农民月均收入在500元到520元间人数的百分比约为 . 解析:因为月收入服从正态分布N(500,202),所以μ=500,σ=20,μ-σ=480,μ+σ=520.所以月均收入在[480,520]范围内的概率为0.683.由图像的对称性可知,此县农民月均收入在500到520元间人数的百分比约为34.15%.答案:34.15%4.某种零件的尺寸ξ(单位:cm)服从正态分布N(3,12),则不属于区间[1,5]这个尺寸范围的零件数约占总数的 . 解析:零件尺寸属于区间[μ-2σ,μ+2σ],即零件尺寸在[1,5]内取值的概率约为95.4%,故零件尺寸不属于区间[1,5]内的概率为1-95.4%=4.6%.答案:4.6%5. 设在一次数学考试中,某班学生的分数X~N(110,202),且知试卷满分150分,这个班的学生共54人,求这个班在这次数学考试中及格(即90分及90分以上)的人数和130分以上的人数.解:μ=110,σ=20,P(X≥90)=P(X-110≥-20)=P(X-μ≥-σ),∵P(X-μσ)≈2P(X-μ130)=P(X-110>20)=P(X-μ>σ),∴P(X-μσ)≈0.683+2P(X-μ>σ)=1,∴P(X-μ>σ)=0.158 5,即P(X>130)=0.158 5.∴54×0.158 5≈9(人),即130分以上的人数约为9人.
探究新知问题1:已知100件产品中有8件次品,现从中采用有放回方式随机抽取4件.设抽取的4件产品中次品数为X,求随机变量X的分布列.(1):采用有放回抽样,随机变量X服从二项分布吗?采用有放回抽样,则每次抽到次品的概率为0.08,且各次抽样的结果相互独立,此时X服从二项分布,即X~B(4,0.08).(2):如果采用不放回抽样,抽取的4件产品中次品数X服从二项分布吗?若不服从,那么X的分布列是什么?不服从,根据古典概型求X的分布列.解:从100件产品中任取4件有 C_100^4 种不同的取法,从100件产品中任取4件,次品数X可能取0,1,2,3,4.恰有k件次品的取法有C_8^k C_92^(4-k)种.一般地,假设一批产品共有N件,其中有M件次品.从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为P(X=k)=CkM Cn-kN-M CnN ,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M},则称随机变量X服从超几何分布.
二项式定理形式上的特点(1)二项展开式有n+1项,而不是n项.(2)二项式系数都是C_n^k(k=0,1,2,…,n),它与二项展开式中某一项的系数不一定相等.(3)二项展开式中的二项式系数的和等于2n,即C_n^0+C_n^1+C_n^2+…+C_n^n=2n.(4)在排列方式上,按照字母a的降幂排列,从第一项起,次数由n次逐项减少1次直到0次,同时字母b按升幂排列,次数由0次逐项增加1次直到n次.1.判断(正确的打“√”,错误的打“×”)(1)(a+b)n展开式中共有n项. ( )(2)在公式中,交换a,b的顺序对各项没有影响. ( )(3)Cknan-kbk是(a+b)n展开式中的第k项. ( )(4)(a-b)n与(a+b)n的二项式展开式的二项式系数相同. ( )[解析] (1)× 因为(a+b)n展开式中共有n+1项.(2)× 因为二项式的第k+1项Cknan-kbk和(b+a)n的展开式的第k+1项Cknbn-kak是不同的,其中的a,b是不能随便交换的.(3)× 因为Cknan-kbk是(a+b)n展开式中的第k+1项.(4)√ 因为(a-b)n与(a+b)n的二项式展开式的二项式系数都是Crn.[答案] (1)× (2)× (3)× (4)√
(2)方法一:第一次取到一件不合格品,还剩下99件产品,其中有4件不合格品,95件合格品,于是第二次又取到不合格品的概率为4/99,由于这是一个条件概率,所以P(B|A)=4/99.方法二:根据条件概率的定义,先求出事件A,B同时发生的概率P(AB)=(C_5^2)/(C_100^2 )=1/495,所以P(B|A)=(P"(" AB")" )/(P"(" A")" )=(1/495)/(5/100)=4/99.6.在某次考试中,要从20道题中随机地抽出6道题,若考生至少答对其中的4道题即可通过;若至少答对其中5道题就获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.解:设事件A为“该考生6道题全答对”,事件B为“该考生答对了其中5道题而另一道答错”,事件C为“该考生答对了其中4道题而另2道题答错”,事件D为“该考生在这次考试中通过”,事件E为“该考生在这次考试中获得优秀”,则A,B,C两两互斥,且D=A∪B∪C,E=A∪B,由古典概型的概率公式及加法公式可知P(D)=P(A∪B∪C)=P(A)+P(B)+P(C)=(C_10^6)/(C_20^6 )+(C_10^5 C_10^1)/(C_20^6 )+(C_10^4 C_10^2)/(C_20^6 )=(12" " 180)/(C_20^6 ),P(E|D)=P(A∪B|D)=P(A|D)+P(B|D)=(P"(" A")" )/(P"(" D")" )+(P"(" B")" )/(P"(" D")" )=(210/(C_20^6 ))/((12" " 180)/(C_20^6 ))+((2" " 520)/(C_20^6 ))/((12" " 180)/(C_20^6 ))=13/58,即所求概率为13/58.