(三)、练习巩固,拓展应用:1、出示依据教科书第31页“做一做”制成的课件。请学生看题,说说图意:提醒学生想一想,要解决“用这些花可以摆多少个图案”这个问题已经有什么数据(小朋友设计的“每6盆花可以摆一个图案”和“两组盆花,每组有9盆花”),还缺少什么信息数据(一共有多少盆花?)。应怎样解决?2、让学生自已尝试解决。学生完成后,请学生交流解决问题的过程,促使学生弄清楚解决用乘法和除法两法计算解决问题的步骤。3、让学生自己提出问题,解决问题。注意引导学生提出用乘法和除法计算的问题。4、汇报交流:说说自己提出的问题先解决什么,再解决什么。师选择有价值的问题写在黑板上。5、比较发现,巩固算法:让学生比较例4和“做一做”,有什么相同点和不同点。特别是不同点,让学生观察得出例4是先解决一辆小汽车的价钱是多少元?再解决5辆小汽车多少钱;“做一做”是先解决共有几盆花?再解决可以摆几种图案。使学生明白乘除两步计算解决问题的不同特征。
【说学法】我们都知道教法和学法是辩证统一的,它们相互制约,相互影响。而当今的素质教育要求我们要重视培养学生的自学能力,教给方法,达到自主学习。因此,针对以上教法的选用和二年级学生的年龄特点,我主要采用“扶放结合法”来进行学法的指导。主要体现在以下几个方面:(1)在揭示课题后,我便“放”手让学生自己说说:看到课题后,你想学什么?通过提问再归纳提出教学目标,这样,使学生一开始就有了自主意识,初步学会如何主动参与到学习中来。(2)而在比较例1与复习题的异同点时,我主要侧重于“扶”。因为二年级小学生经常找不到比较的标准,观察时又带有很大的随意性和盲目性。所以我要“扶”着他们分别从3个不同的角度去进行有序的观察、分析、比较,从而使学生学会了观察,学会了比较,还学会了学法的迁移。
一、创设情境,导入新课教师边放课件边讲故事):今天老师给你们讲一个“猴妈妈分桃”的故事。有一天,一群小猴到山下去玩,走着走着,看到一棵桃树上结满了又大又红的桃,就摘了很多。回家后,猴妈妈看到小猴们拿了这么多桃回来,可高兴了,说:“妈妈分桃给你们吃。”二、合作交流,探索新知1、动手操作,探究方法(1)提出问题。师:小猴摘了多少个桃?准备每只小猴分3个,可分给几只猴子?(板书:12个桃,每只小猴分3个,可以分给几只小猴?)(2)学生列式:12÷3=(3)分一分学生小组合作,动手分一分。(可以用其他的物体代替)(4)说一说分的过程可能有以下几种:第一种:先分给第一只小猴3个桃,再分给第二只小猴3个桃,然后给第3只小猴3个桃,最后3个桃正好分给第四只小猴。……12个桃可分4只猴子。
在“实例导入,激发兴趣”这一环节中我运用课件展示收集矿泉水瓶情况统计表,以生活中的环保例子为话题引入新课,激发学生的兴趣。在“自主探究,尝试估算”这一环节中我安排了同桌合作、互相交流算法,尽量把不同的策略都展现出来,使学生通过讨论体会到:解决同一个问题可以有不同的方法,只要合理都可以采用。计算策略不同,估算的结果也会不同。如估算第三、四周一共收集的个数:如果把192看做190,把219看做220,结果是410个;如果把192看做200,把219看做200,结果是400个,两种结果都是合理的,只是一种稍微粗略些,一种稍微精确些。经过学习,学生掌握了一些基本的估算方法和估算策略。这样设计的用意是:数学源于生活,用于生活,我选择学生身边的素材,激发学生的兴趣和求知欲,使学生积极主动的寻求解决问题的方法。
【说教学目标】根据教学大纲和新课程标准要求,这节课的教学目标确定为:1、知识与技能:由生活实际出发,让学生感受万以内的数在生活中的应用,进一步体会相邻两个计数单位之间的十进关系。学会读写万以内的数,知道数的组成,掌握数位顺序表。2、过程与方法:在具体情景中感受大数的意义,培养学生的数感和估计意识;经历观察、操作及与同伴合作交流等数学活动过程,使学生初步学会有条理地思考和解决问题。3、情感与态度:进一步体验数学与人类生活的密切联系;在活动中体验学习的成功与快乐,培养学习数学的兴趣和自信心并能正确评价自己和他人。其中认识数的计数单位“万”,会读写万以内的数,掌握数位顺序表时这节课的重点,而熟练地读写万以内的数是难点。
3、教材结构分析教材内容可以看出,本节课包含四个知识的内容。即调查入学时的体重情况填写统计表;收集现在(二年级)的体重情况填写统计表;把入学以及现在的体重情况统一填写到同一个统计表中;整理、分析表内信息回答简单的问题。但从本地学生情况实际出发,以及条件的限制,所以本人对教材内容进行了略微的调整,将调查入学时的体重情况填写统计表改为统计本地区天气情况,也与现实生活紧密地联系在一起。同时,按照教材的逻辑性将知识整合在新课程改革的目标中。4、教学目标(1)知识目标:能运用信息的手段、新的学习方法收集整理数据完成简单的复合式统计图。(2)情感目标:能根据统计图表中的数据提出并解答简单的问题,感受生活中处处有数学,结合实例有机地进行家乡情的教育。
学生在一年级上册开始学习简单的分类整理,初步认识了象形统计图和简单的统计表。本课继续学习统计,以整理随机出现的简单数据为主要内容,并把经过整理的数据填进简单的统计表。在统计过程中,让学生学到一些比较容易的统计方法,渗透统计的思想和方法,激发培养学生的学习热情和信心。三、教学目标:1、使学生体验数据的收集、整理、描述和分析的过程,了解统计的意义,会用简单的方法收集和表现数据。2、认识条形统计图,明确用1格表示5个单位的表现形式,能根据统计图提出问题,并初步进行简单的预测。3、在学习过程中培养学生的实践能力与合作意识。四、重点难点教学重点:使学生认识条形统计图,明确可以用一格表示5个单位。教学难点:引导学生通过合作讨论找到切实可行的解决问题的方法。
一、教学内容本节课是九年义务教育六年制小学数学教科书(新人教版)二年级下册第42页的例3的内容。二、教材分析例3是用除法解决问题的内容,和“表内乘法(二)”中的解决问题相对应。这个题目中所涉及的数量已由离散量扩展到连续量,由实物个数扩展到了取自于量的数量,它所反映的数量关系是除法现实模型的拓展,渗透了单价、数量、总价的数量关系,需要学生根据除法的含义来解决。“想一想”是继续深化学生对除法意义的理解,并培养了学生发现问题,提出问题的能力。三、教学目标1、根据除法的意义,初步理解数量、单价、总价的数量关系,会用除法解决生活中与此数量有关的实际问题。2、将处罚扩展到连续量中去,深化学生对除法含义的理解。3、培养学生从具体生活情境中发现问题,根据问题筛选有用的信息从而培养解决问题的能力。
二、典例解析例10. 如图,正方形ABCD 的边长为5cm ,取正方形ABCD 各边的中点E,F,G,H, 作第2个正方形 EFGH,然后再取正方形EFGH各边的中点I,J,K,L,作第3个正方形IJKL ,依此方法一直继续下去. (1) 求从正方形ABCD 开始,连续10个正方形的面积之和;(2) 如果这个作图过程可以一直继续下去,那么所有这些正方形的面积之和将趋近于多少?分析:可以利用数列表示各正方形的面积,根据条件可知,这是一个等比数列。解:设正方形的面积为a_1,后续各正方形的面积依次为a_2, a_(3, ) 〖…,a〗_n,…,则a_1=25,由于第k+1个正方形的顶点分别是第k个正方形各边的中点,所以a_(k+1)=〖1/2 a〗_k,因此{a_n},是以25为首项,1/2为公比的等比数列.设{a_n}的前项和为S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10个正方形的面积之和为25575/512cm^2.(2)当无限增大时,无限趋近于所有正方形的面积和
课前小测1.思考辨析(1)若Sn为等差数列{an}的前n项和,则数列Snn也是等差数列.( )(2)若a1>0,d<0,则等差数列中所有正项之和最大.( )(3)在等差数列中,Sn是其前n项和,则有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在项数为2n+1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故选B项.]3.等差数列{an}中,S2=4,S4=9,则S6=________.15 [由S2,S4-S2,S6-S4成等差数列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知数列{an}的通项公式是an=2n-48,则Sn取得最小值时,n为________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有负项的和最小,即n=23或24.]二、典例解析例8.某校新建一个报告厅,要求容纳800个座位,报告厅共有20排座位,从第2排起后一排都比前一排多两个座位. 问第1排应安排多少个座位?分析:将第1排到第20排的座位数依次排成一列,构成数列{an} ,设数列{an} 的前n项和为S_n。
二、典例解析例4. 用 10 000元购买某个理财产品一年.(1)若以月利率0.400%的复利计息,12个月能获得多少利息(精确到1元)?(2)若以季度复利计息,存4个季度,则当每季度利率为多少时,按季结算的利息不少于按月结算的利息(精确到10^(-5))?分析:复利是指把前一期的利息与本金之和算作本金,再计算下一期的利息.所以若原始本金为a元,每期的利率为r ,则从第一期开始,各期的本利和a , a(1+r),a(1+r)^2…构成等比数列.解:(1)设这笔钱存 n 个月以后的本利和组成一个数列{a_n },则{a_n }是等比数列,首项a_1=10^4 (1+0.400%),公比 q=1+0.400%,所以a_12=a_1 q^11 〖=10〗^4 (1+0.400%)^12≈10 490.7.所以,12个月后的利息为10 490.7-10^4≈491(元).解:(2)设季度利率为 r ,这笔钱存 n 个季度以后的本利和组成一个数列{b_n },则{b_n }也是一个等比数列,首项 b_1=10^4 (1+r),公比为1+r,于是 b_4=10^4 (1+r)^4.
二、典例解析例3.某公司购置了一台价值为220万元的设备,随着设备在使用过程中老化,其价值会逐年减少.经验表明,每经过一年其价值会减少d(d为正常数)万元.已知这台设备的使用年限为10年,超过10年 ,它的价值将低于购进价值的5%,设备将报废.请确定d的范围.分析:该设备使用n年后的价值构成数列{an},由题意可知,an=an-1-d (n≥2). 即:an-an-1=-d.所以{an}为公差为-d的等差数列.10年之内(含10年),该设备的价值不小于(220×5%=)11万元;10年后,该设备的价值需小于11万元.利用{an}的通项公式列不等式求解.解:设使用n年后,这台设备的价值为an万元,则可得数列{an}.由已知条件,得an=an-1-d(n≥2).所以数列{an}是一个公差为-d的等差数列.因为a1=220-d,所以an=220-d+(n-1)(-d)=220-nd. 由题意,得a10≥11,a11<11. 即:{█("220-10d≥11" @"220-11d<11" )┤解得19<d≤20.9所以,d的求值范围为19<d≤20.9
知识探究(一):普查与抽查像人口普查这样,对每一个调查调查对象都进行调查的方法,称为全面调查(又称普查)。 在一个调查中,我们把调查对象的全体称为总体,组成总体的每一个调查对象称为个体。为了强调调查目的,也可以把调查对象的某些指标的全体作为总体,每一个调查对象的相应指标作为个体。问题二:除了普查,还有其他的调查方法吗?由于人口普查需要花费巨大的财力、物力,因而不宜经常进行。为了及时掌握全国人口变动状况,我国每年还会进行一次人口变动情况的调查,根据抽取的居民情况来推断总体的人口变动情况。像这样,根据一定目的,从总体中抽取一部分个体进行调查,并以此为依据对总体的情况作出估计和判断的方法,称为抽样调查(或称抽查)。我们把从总体中抽取的那部分个体称为样本,样本中包含的个体数称为样本量。
提问:1.怎样判断两种相关联的量是否成正比例?用字母怎样表示正比例关系? 2.判断下面两种量是否成正比例?为什么? (1)时间一定,行驶的路程和速度 (2)除数一定,被除数和商 3.单价、数量和总价之间有怎样的关系?在什么条件下,两种量成正比例? 4.导入新课: 如果总价一定,单价和数量的变化有什么规律?这两种量存在什么关系?今天,我们就来研究这种变化规律。
教学目标1、明确扇形统计图的制作步骤,能够根据相关数据较为准确地制作扇形统计图.2、进一步理解扇形统计图的特点,建立百分比大小和扇形圆心角大小之间初步的直观敏感度.3、能够实现不同统计图数据间的合理转换,再次体会几种统计图的不同特点,为合理选择统计图表示数据打下一定的基础.4、通过实例,理解三种统计图的特点,能根据具体问题选择合适的统计图清晰、有效地描述数据.5、在统计活动的过程中,通过相互间的合作与交流,掌握画统计图和选择统计图的方法;经历数据的收集、整理和简单分析、作出决策的统计活动过程,发展统计观念.6、通过对现实生活中的数据分析,感受数学与现实生活的密切联系,说出统计图在现实生活中的应用,提高学习数学兴趣.
小学五年级的学生应该具备一些生活技能, 学做家常菜是我们生活的必需,是每个,人都应该掌握的生存技能。本主题的目的通过学习做简单的家常菜,引领小学生走进家务劳动,锻炼生活的自理能力和提高适应生活的能力,体会生活和学习的乐趣,激发学生将学校学习和家务劳动密切结合起来,形成积极的生活和学习的态度。本主题安排了“问题与思考”“学习与探究”“实践与体验”总结与交流“拓展与创新”五个环节,从提出问题开始,到探究与体验,最后到学有所用,循序渐进,引导学习走进中式餐饮文化,学做日常生活中的家常菜,掌握劳动的技能和方法,体验做家务劳动带来的快乐和享受,激发学生对家常菜的探究与实践的兴趣,逐步掌握日常生活所需的基本技能,培养热爱劳动、热爱生活的意识。
教法分析:在新课程的教学中教师要向学生提供从事数学活动的机会,倡导让学生亲身经历数学知识的形成与应用过程,鼓励学生自主探索与合作交流,让学生在实践中体验、学习。因此,本节课我采用了多媒体辅助教学与学生动手操作、观察、讨论的方式,一方面能够直观、生动地反映各种图形的特征,增加课堂的容量,吸引学生注意力,激发学生的学习兴趣;另一方面也有利于突出重点、突破难点,更好地提高课堂效率。学法分析:初二年级学习对新事物比较敏感,通过新课程教学的实施,学生已具有一定探索学习与合作交流的习惯。但是一下子要学生从直观的图形去概括出抽象图形全等的概念这是比较困难的。因此,我指导学生:一要善于观察发现;二要勇于探索、动手实验;三要把自己的所思所想大胆地进行交流,从而得出正确的结论,并掌握知识。
(一)知识与能力 1、指导学生基本掌握诵读本诗的要领,培养学生声情并茂、准确传达情感的诵读能力. 2、帮助学生初步了解“初读—精读—悟读—美读”的诗歌鉴赏方法,培养学生鉴赏古典诗歌的能力。(二)、情感态度与价值观 1、走近李白的激情、浪漫、诗性和放达,感受全诗恢宏的气魄。 2、激发学生与文本、文人和文化的亲近之情
四个同学为一个合作小组;每个小组利用教师为其准备的各类三角形,作出它们的高.比一比,看哪一个小组做得最快,发现的结论多. 师生行为:学生操作、讨论,教师巡视、指导,使学生理解【设计意图】通过让学生操作、观察、推理、交流等活动,来培养学生的动手、动脑能力,发展其空间观察.活动结论:1.锐角三角形的三条高都在三角形内; 2.直角三角形的一条高在三角形内(即斜边上的高),而另两条高恰是它的两条直角边; 3.钝角三角形的一条高在三角形内,而另两条高在三角形外.(这是难点,需多加说明) 总之:任何三角形都有三条高,且三条高所在的直线相交于一点.(我们把这一点叫垂心)课堂小结 1.三角形中三条重要线段:三角形的高、中线和角平分线的概念. 2.学会画三角形的高、中线和角平分线.
(一)、创设情景,导入新课摸牌游戏:三位同学持三组牌,指定三位同学分别任意摸出一张,看谁能摸到红牌,他们一定能摸到红牌吗?请手持牌的同学根据自已手中牌的情况,用语言描述一下抽出红牌的情况。总结:在一定条件下,有些事情我们事先能肯定它一定发生,这些事情成为 事件。有些事情我们事先能肯定它一定不会发生,这些事情称为 事件。 事件和 事件统称为确定事件。许多事情我们事先无法肯定它会不会发生,这些事情称为 事件,也称为 事件。