解析:(1)连接BI,根据I是△ABC的内心,得出∠1=∠2,∠3=∠4,再根据∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可证出IE=BE;(2)由三角形的内心,得到角平分线,根据等腰三角形的性质得到边相等,由等量代换得到四条边都相等,推出四边形是菱形.解:(1)BE=IE.理由如下:如图①,连接BI,∵I是△ABC的内心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四边形BECI是菱形.证明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的内心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)证得IE=BE,∴BE=CE=BI=IC,∴四边形BECI是菱形.方法总结:解决本题要掌握三角形的内心的性质,以及圆周角定理.
方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.变式训练:见《学练优》本课时练习“课后巩固提升” 第7题【类型三】 构造直角三角形解决面积问题在△ABC中,∠B=45°,AB=2,∠A=105°,求△ABC的面积.解析:过点A作AD⊥BC于点D,根据勾股定理求出BD、AD的长,再根据解直角三角形求出CD的长,最后根据三角形的面积公式解答即可.解:过点A作AD⊥BC于点D,∵∠B=45°,∴∠BAD=45°,∴AD=BD=22AB=22×2=1.∵∠A=105°,∴∠CAD=105°-45°=60°,∴∠C=30°,∴CD=ADtan30°=133=3,∴S△ABC=12(CD+BD)·AD=12×(3+1)×1=3+12. 方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.
首先请学生分析:过B、C作梯形ABCD的高,将梯形分割成两个直角三角形和一个矩形来解.教师可请一名同学上黑板板书,其他学生笔答此题.教师在巡视中为个别学生解开疑点,查漏补缺.解:作BE⊥AD,CF⊥AD,垂足分别为E、F,则BE=23m.在Rt△ABE中,∴AB=2BE=46(m).∴FD=CF=23(m).答:斜坡AB长46m,坡角α等于30°,坝底宽AD约为68.8m.引导全体同学通过评价黑板上的板演,总结解坡度问题需要注意的问题:①适当添加辅助线,将梯形分割为直角三角形和矩形.③计算中尽量选择较简便、直接的关系式加以计算.三、课堂小结:请学生总结:解直角三角形时,运用直角三角形有关知识,通过数值计算,去求出图形中的某些边的长度或角的大小.在分析问题时,最好画出几何图形,按照图中的边角之间的关系进行计算.这样可以帮助思考、防止出错.四、布置作业
问题2、如何用测角仪测量一个低处物体的俯角呢?和测量仰角的步骤是一样的,只不过测量俯角时,转动度盘,使度盘的直径对准低处的目标,记下此时铅垂线所指的度数,同样根据“同角的余角相等”,铅垂线所指的度数就是低处的俯角.活动三:测量底部可以到达的物体的高度.“底部可以到达”,就是在地面上可以无障碍地直接测得测点与被测物体底部之间的距离.要测旗杆MN的高度,可按下列步骤进行:(如下图)1.在测点A处安置测倾器(即测角仪),测得M的仰角∠MCE=α.2.量出测点A到物体底部N的水平距离AN=l.3.量出测倾器(即测角仪)的高度AC=a(即顶线PQ成水平位置时,它与地面的距离).根据测量数据,就能求出物体MN的高度.在Rt△MEC中,∠MCE=α,AN=EC=l,所以tanα= ,即ME=tana·EC=l·tanα.又因为NE=AC=a,所以MN=ME+EN=l·tanα+a.
如图,课外数学小组要测量小山坡上塔的高度DE,DE所在直线与水平线AN垂直.他们在A处测得塔尖D的仰角为45°,再沿着射线AN方向前进50米到达B处,此时测得塔尖D的仰角∠DBN=61.4°,小山坡坡顶E的仰角∠EBN=25.6°.现在请你帮助课外活动小组算一算塔高DE大约是多少米(结果精确到个位).解析:根据锐角三角函数关系表示出BF的长,进而求出EF的长,得出答案.解:延长DE交AB延长线于点F,则∠DFA=90°.∵∠A=45°,∴AF=DF.设EF=x,∵tan25.6°=EFBF≈0.5,∴BF=2x,则DF=AF=50+2x,故tan61.4°=DFBF=50+2x2x=1.8,解得x≈31.故DE=DF-EF=50+31×2-31=81(米).所以,塔高DE大约是81米.方法总结:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.
解在角度单位状态为“度”的情况下(屏幕显示出 ),按下列顺序依次按键:显示结果为36.538 445 77.再按键:显示结果为36゜32′18.4.所以,x≈36゜32′.例5 已知cot x=0.1950,求锐角x.(精确到1′)分析根据tan x= ,可以求出tan x的值,然后根据例4的方法就可以求出锐角x的值.四、课堂练习1. 使用计算器求下列三角函数值.(精确到0.0001)sin24゜,cos51゜42′20″,tan70゜21′,cot70゜.2. 已知锐角a的三角函数值,使用计算器求锐角a.(精确到1′)(1)sin a=0.2476; (2)cos a=0.4174;(3)tan a=0.1890; (4)cot a=1.3773.五、学习小结内容总结不同计算器操作不同,按键定义也不一样。同一锐角的正切值与余切值互为倒数。在生活中运用计算器一定要注意计算器说明书的保管与使用。方法归纳在解决直角三角形的相关问题时,常常使用计算器帮助我们处理比较复杂的计算。
③设每件衬衣降价x元,获得的利润为y元,则定价为 元 ,每件利润为 元 ,每星期多卖 件,实际卖出 件。所以Y= 。(0<X<20)何时有最大利润,最大利润为多少元?比较以上两种可能,衬衣定价多少元时,才能使利润最大?☆ 归纳反思 ☆总结得出求最值问题的一般步骤:(1)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;(2)在自变量的取值范围内,运用公式法或通过配方法求出二次函数的最值。☆ 达标检测 ☆ 1、用长为6m的铁丝做成一个边长为xm的矩形,设矩形面积是ym2,,则y与x之间函数关系式为 ,当边长为 时矩形面积最大.2、蓝天汽车出租公司有200辆出租车,市场调查表明:当每辆车的日租金为300元时可全部租出;当每辆车的日租金提高10元时,每天租出的汽车会相应地减少4辆.问每辆出租车的日租金提高多少元,才会使公司一天有最多的收入?
(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?解析:(1)分1≤x<50和50≤x≤90两种情况进行讨论,利用利润=每件的利润×销售的件数,即可求得函数的解析式;(2)利用(1)得到的两个解析式,结合二次函数与一次函数的性质分别求得最值,然后两种情况下取最大的即可.解:(1)当1≤x<50时,y=(200-2x)(x+40-30)=-2x2+180x+2000;当50≤x≤90时,y=(200-2x)(90-30)=-120x+12000.综上所述,y=-2x2+180x+2000(1≤x<50),-120x+12000(50≤x≤90);(2)当1≤x<50时,y=-2x2+180x+2000,二次函数开口向下,对称轴为x=45,当x=45时,y最大=-2×452+180×45+2000=6050;当50≤x≤90时,y=-120x+12000,y随x的增大而减小,当x=50时,y最大=6000.综上所述,销售该商品第45天时,当天销售利润最大,最大利润是6050元.方法总结:本题考查了二次函数的应用,读懂表格信息、理解利润的计算方法,即利润=每件的利润×销售的件数,是解决问题的关键.
如图所示,要用长20m的铁栏杆,围成一个一面靠墙的长方形花圃,怎么围才能使围成的花圃的面积最大?如果花圃垂直于墙的一边长为xm,花圃的面积为ym2,那么y=x(20-2x).试问:x为何值时,才能使y的值最大?二、合作探究探究点一:二次函数y=ax2+bx+c的最值已知二次函数y=ax2+4x+a-1的最小值为2,则a的值为()A.3 B.-1 C.4 D.4或-1解析:∵二次函数y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故选C.方法总结:求二次函数的最大(小)值有三种方法,第一种是由图象直接得出,第二种是配方法,第三种是公式法.变式训练:见《学练优》本课时练习“课堂达标训练” 第1题探究点二:利用二次函数求图形面积的最大值【类型一】 利用二次函数求矩形面积的最大值
解析:正多边形的边心距、半径、边长的一半正好构成直角三角形,根据勾股定理就可以求解.解:(1)设正三角形ABC的中心为O,BC切⊙O于点D,连接OB、OD,则OD⊥BC,BD=DC=a.则S圆环=π·OB2-π·OD2=πOB2-OD2=π·BD2=πa2;(2)只需测出弦BC(或AC,AB)的长;(3)结果一样,即S圆环=πa2;(4)S圆环=πa2.方法总结:正多边形的计算,一般是过中心作边的垂线,连接半径,把内切圆半径、外接圆半径、边心距,中心角之间的计算转化为解直角三角形.变式训练:见《学练优》本课时练习“课后巩固提升”第4题【类型四】 圆内接正多边形的实际运用如图①,有一个宝塔,它的地基边缘是周长为26m的正五边形ABCDE(如图②),点O为中心(下列各题结果精确到0.1m).(1)求地基的中心到边缘的距离;(2)已知塔的墙体宽为1m,现要在塔的底层中心建一圆形底座的塑像,并且留出最窄处为1.6m的观光通道,问塑像底座的半径最大是多少?
解析:点E是BC︵的中点,根据圆周角定理的推论可得∠BAE=∠CBE,可证得△BDE∽△ABE,然后由相似三角形的对应边成比例得结论.证明:∵点E是BC︵的中点,即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法总结:圆周角定理的推论是和角有关系的定理,所以在圆中,解决相似三角形的问题常常考虑此定理.三、板书设计圆周角和圆心角的关系1.圆周角的概念2.圆周角定理3.圆周角定理的推论本节课的重点是圆周角与圆心角的关系,难点是应用所学知识灵活解题.在本节课的教学中,学生对圆周角的概念和“同弧所对的圆周角相等”这一性质较容易掌握,理解起来问题也不大,而对圆周角与圆心角的关系理解起来则相对困难,因此在教学过程中要着重引导学生对这一知识的探索与理解.还有些学生在应用知识解决问题的过程中往往会忽略同弧的问题,在教学过程中要对此予以足够的强调,借助多媒体加以突出.
解析:(1)由切线的性质得AB⊥BF,因为CD⊥AB,所以CD∥BF,由平行线的性质得∠ADC=∠F,由圆周角定理的推论得∠ABC=∠ADC,于是证得∠ABC=∠F;(2)连接BD.由直径所对的圆周角是直角得∠ADB=90°,因为∠ABF=90°,然后运用解直角三角形解答.(1)证明:∵BF为⊙O的切线,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半径为203.方法总结:运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
四是聚焦保争创,加强消防监管、提升维稳创安。研判受疫情影响消防安全形式,多举措并举加强社会面火灾防控。推进消防体系建设。*县先后召开会议5次,听取和研究消防工作,付刚县长等领导带队开展专项检查8次;向行业部门发送工作建议书、提示函73份;通过视频远程连线方式对行业部门负责人进行约谈3次,圆满完成省政府安全生产和消防安全考核工作。推进消防隐患治理。施划消防通道1059平方米,设置警示牌71个,清理通道35条,查处隐患52处;提请政府挂牌重大火灾隐患单位2家,已摘牌1家;抽查社会单位74家,抽查任务完成率达100%,未发生较大以上火灾事故,无行政复议变更、撤销、行政诉讼败诉案件;共办理行政处罚案件3起,严格执行裁量标准处罚。推进消防全民参与。建成消防主题餐厅1个;开展农村干部和社会群众消防培训510余人次;聘请消防安全课外辅导员15人;拓展出租车电子屏、高速广告牌两大宣传平台;与*县电视台、牡丹江晨报特约记者建立合作机制,与牡丹江市公安局新闻中心、*县电视台达成定期培训协议,聘请地方专业摄影师、电视台人员完成大队形象宣传片。
2在以自身为中心区分左右的基础上,学会以客体为中心区分左右3培养幼儿的空间方位感,提高思维的灵活性二活动准备木偶,图示三活动过程(一)通过游戏,幼儿复习以自我为中心区分左右师:今天我们要玩一个游戏,当我说左手你们就伸出你们的左手,当我说右耳朵的时候你们就用手指着你们的右耳朵
2、通过观察阅读画面,初步认识牙齿的好坏,了解刷牙的正确方法。 3、懂得牙齿的用处很大,要注意保护好自己的牙齿。 活动准备: 洗好、切好的苹果若干 幼儿用书——我的牙齿用处大,铅笔人手一支。 活动过程: 1、每一位小朋友吃一块苹果,说说牙齿的用处。 教师:请小朋友慢慢吃苹果,吃完后告诉大家,你是怎样把苹果吃下去的? 引导幼儿说出需要牙齿咬和嚼,帮助我们把食物吃下去。 2、认识牙齿的构造。 请小朋友把嘴巴张开,互相看一看,牙齿是什么样子的? 使幼儿知道每个人嘴巴里有许多牙齿,我们的牙齿有上下两排,嘴里牙齿的形状和大小不一样,牙齿是白白的 3、组织幼儿讨论:牙齿有什么用? (1)、鼓励幼儿根据自己以有的知识经验,大胆地参与讲述活动。通过讨论使幼儿知道牙齿可以帮助我们将大块的食物嚼碎变成小块的食物。 (2)、启发幼儿想一想:牙齿除了可以帮助我们吃食物,他还有什么作用呢? 教师请小朋友先试一试发“四”这个音,让幼儿感受到,如果没有牙齿不能发出“四”,再试一试发“师”、“自己”等音,没有牙齿行吗? 小结:牙齿还可以帮助我们讲话,帮助我们发准音。 组织幼儿讨论:怎样保护自己的牙齿呢? 教师小结:每天早晚要漱口、刷牙。睡觉前,不吃零食、少吃甜食和坚硬的食物。
2、愿意通过自己的努力,想办法获取知识。3、喜欢与同伴合作,共同探究,共同分享。资源准备:1、背景知识:了解有关残留农药的危害,并掌握几种祛除方法。2、物质材料:各种水果蔬菜、两块展板、幼儿手头资料。3、活动铺垫:本活动重点让幼儿知道几种祛除农药的方法,所以把了解农药危害放在活动前的 铺垫部分,请幼儿收集了农药危害的资料,大家一起展示交流,知道残留农药会使人腹痛、 腹泻、消化不良,引发心脑血管疾病,甚至危急生命等然后请幼儿回去后继续收集祛除农药 的方法的资料。活动与指导:1、巩固已有知识:请小朋友观看上一次活动布置的展板,巩固关于残留农药危害的知识,请两个代表解说一下小朋友的资料。2、了解几种祛除农药的方法:(1)、请小朋友小组交流收集到的资料,说一说自己了解到的方法。(2)、幼儿自由展示资料,相同方法的资料同时粘贴到展板上。总结出四种方法:浸泡、去皮、刷洗、加热。(3)组讨论:认为哪种方法最好。(4)组派一名代表说出自己组的想法,其他组进行评价。(例如:第一组认为去皮办法好,农药祛除彻底,其他组有的幼儿持反对意见,认为用刀去皮,容易割到手;而有的幼儿持支持意见,认为桃、芒果可以直接剥皮,不存在危险等等。[关注点]A、关注幼儿能否积极参与讨论 B、关注幼儿评价时是否敢于表达自己的想法
2、丰富幼儿有关椅子的知识,发展幼儿的思维能力,教给抹椅子的技能,培养幼儿爱护小椅子。准备:干净与脏椅子各1张(质地、颜色、大小高矮相同),水盆1只,抹布31块。过程:1、以游戏口吻请幼儿用眼睛仔细看一看,两张椅子有什么不一样,说一说喜欢哪一张椅子。 2、动动小脑子,说说怎样让脏椅子变成干净的小椅子呢?老师在肯定幼儿正确回答的基础上出示抹布问:“这是什么?有什么用?”教师示范并用诗歌讲解洗抹的方法,如“先抹桌子面,再抹桌子背,横档抹一抹,最后抹椅腿”。抹好后请幼儿闭上眼睛,老师将两张椅子交换位置后问幼儿:“你喜欢哪一张小椅子?”(都喜欢)
一、班会背景:手机作为现代高科技的产物,已被越来越多的中学生所拥有,并逐渐地走进了学校,甚至走向课堂。由于高中生自控能力较差,对合理使用手机的认识不够,因此,无法摆脱手机的诱惑,从而影响了正常的学习和生活。最终导致了成绩下降。二、班会目标:1、通过班会,达到教育、自我教育的目的,并让同学们清楚地认识到,在校园里应当禁止使用手机。2、以探讨使用手机的利弊作为契机,折射出对一切高科产物都应辨证接受,真正体现它的价值。3、培养同学们人生观和价值观。三、活动准备:组织班委干部开会,搜集主题班会材料,讨论并确定班会发言内容,书写教案和制作课件。四、班会过程:1、学习“纪律六条”2、讨论中学生使用手机的弊端(同学A、同学B、同学C代表发言)(1)聊天打游戏看视频,影响休息,严重影响学业。多数家长反映,孩子用手机谈论学习的内容少,用于同学之间联系或发短信的多。
以上基本上就是我们组织部所做的工作,在这些工作中,我们可以说是体会颇多,在这些工作中增长了许多经验,很多的新成员都积极的工作,热情高涨,但也体现了很多不足之处,很多新成员都只是一味的听从,并没有体现出创新意识。另外,我们这些老干部也有不足之处,在工作中并没有很好的分配工作,有时候全是自己一人在做,而部门成员无事可做,有时还会出现抱怨情绪,在某些方面大为关火。其实冷静下来分析,这些都是由于自己的工作上分配不当而造成的。总结以上的工作,经过自我反思,所以我们在以后的工作中汲取经验教训,我们不仅要有工作人情和积极的态度,还应该具备创新能力,在工作中得到体现,作为部长更应该值得反思,在以后的工作要合理分配工作,力争做到部门人员无闲人,手上有工作做,在忙碌中体会快了,不要轻易抱怨工作,只要在工作中努力进取,不断总结与反思,那么你会受益匪浅。
3、公司鼓励员工积极参与公司的决策和管理,鼓励员工发挥才智,提出合理化 建议。4、公司推行岗位责任制,实行考勤、考核制度,评先树优,对做出贡献者予以 奖励。5、公司内不得公开或私底下恶性漫骂、批评、散播不实谣言及挑拨是非,破坏 员工彼此团结与和谐。勿于同事或客户面前谈论他人之不是,亦不得在同事 同仁、客户面前指责他人,主管、客户及公司间任何之不是,一经查实,定 严惩重罚之。