解析:(1)根据表中信息,用优等品频数m除以抽取的篮球数n即可;(2)根据表中数据,优等品频率为0.94,0.95,0.93,0.94,0.94,稳定在0.94左右,即可估计这批篮球优等品的概率.解:(1)570600=0.95,744800=0.93,9401000=0.94,11281200=0.94,故表中依次填0.95,0.93,0.94,0.94; (2)这批篮球优等品的概率估计值是0.94.三、板书设计1.频率及其稳定性:在大量重复试验的情况下,事件的频率会呈现稳定性,即频率会在一个常数附近摆动.随着试验次数的增加,摆动的幅度有越来越小的趋势.2.用频率估计概率:一般地,在大量重复实验下,随机事件A发生的频率会稳定到某一个常数p,于是,我们用p这个常数表示随机事件A发生的概率,即P(A)=p.教学过程中,学生通过对比频率与概率的区别,体会到两者间的联系,从而运用其解决实际生活中遇到的问题,使学生感受到数学与生活的紧密联系
【类型二】 根据数轴求不等式的解关于x的不等式x-3<3+a2的解集在数轴上表示如图所示,则a的值是()A.-3 B.-12 C.3 D.12解析:化简不等式,得x<9+a2.由数轴上不等式的解集,得9+a=12,解得a=3,故选C.方法总结:本题考查了在数轴上表示不等式的解集,利用不等式的解集得关于a的方程是解题关键.三、板书设计1.不等式的解和解集2.用数轴表示不等式的解集本节课学习不等式的解和解集,利用数轴表示不等式的解,让学生体会到数形结合的思想的应用,能够直观的理解不等式的解和解集的概念,为接下来的学习打下基础.在课堂教学中,要始终以学生为主体,以引导的方式鼓励学生自己探究未知,提高学生的自我学习能力.
若a,b,c都是不等于零的数,且a+bc=b+ca=c+ab=k,求k的值.解:当a+b+c≠0时,由a+bc=b+ca=c+ab=k,得a+b+b+c+c+aa+b+c=k,则k=2(a+b+c)a+b+c=2;当a+b+c=0时,则有a+b=-c.此时k=a+bc=-cc=-1.综上所述,k的值是2或-1.易错提醒:运用等比性质的条件是分母之和不等于0,往往忽视这一隐含条件而出错.本题题目中并没有交代a+b+c≠0,所以应分两种情况讨论,容易出现的错误是忽略讨论a+b+c=0这种情况.三、板书设计比例的性质基本性质:如果ab=cd,那么ad=bc如果ad=bc(a,b,c,d都不等于0),那么ab=cd等比性质:如果ab=cd=…=mn(b+d+…+n≠0), 那么a+c+…+mb+d+…+n=ab经历比例的性质的探索过程,体会类比的思想,提高学生探究、归纳的能力.通过问题情境的创设和解决过程进一步体会数学与生活的紧密联系,体会数学的思维方式,增强学习数学的兴趣.
方法总结:作平移图形时,找关键点的对应点是关键的一步.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.三、板书设计1.平移的定义在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.2.平移的性质一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等,对应线段平行(或在一条直线上)且相等,对应角相等.3.简单的平移作图教学过程中,强调学生自主探索和合作交流,学生经历将实际问题抽象成图形问题,培养学生的逻辑思维能力和空间想象能力,使得学生能将所学知识灵活运用到生活中.
解:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠2=∠3.又由折叠知△BC′D≌△BCD,∴∠1=∠2.∴∠1=∠3.∴BE=DE.设BE=DE=x,则AE=8-x.∵在Rt△ABE中,AB2+AE2=BE2,∴42+(8-x)2=x2.解得x=5,即DE=5.∴S△BED=12DE·AB=12×5×4=10.方法总结:矩形的折叠问题是常见的问题,本题的易错点是对△BED是等腰三角形认识不足,解题的关键是对折叠后的几何形状要有一个正确的分析.三、板书设计矩形矩形的定义:有一个角是直角的平行四边形 叫做矩形矩形的性质四个角都是直角两组对边分别平行且相等对角线互相平分且相等经历矩形的概念和性质的探索过程,把握平行四边形的演变过程,迁移到矩形的概念与性质上来,明确矩形是特殊的平行四边形.培养学生的推理能力以及自主合作精神,掌握几何思维方法,体会逻辑推理的思维价值.
2.已知:如图 ,在△ABC中,∠C=90°, CD为中线,延长CD到点E,使得 DE=CD.连结AE,BE,则四边形ACBE为矩形吗?说明理由。答案:四边形ACBE是矩形.因为CD是Rt△ACB斜边上的中线,所以DA=DC=DB,又因为DE=CD,所以DA=DC=DB=DE,所以四边形ABCD是矩形(对角线相等且互相平分的四边形是矩形)。四、课堂检测:1.下列说法正确的是( )A.有一组对角是直角的四边形一定是矩形 B.有一组邻角是直角的四边形一定是矩形C.对角线互相平分的四边形是矩形 D.对角互补的平行四边形是矩形2. 矩形各角平分线围成的四边形是( )A.平行四边形 B.矩形 C.菱形 D.正方形3. 下列判定矩形的说法是否正确(1)有一个角是直角的四边形是矩形 ( )(2)四个角都是直角的四边形是矩形 ( )(3)四个角都相等的四边形是矩形 ( ) (4)对角线相等的四边形是矩形 ( )(5)对角线相等且互相垂直的四边形是矩形 ( )(6)对角线相等且互相平分的四边形是矩形 ( )4. 在四边形ABCD中,AB=DC,AD=BC.请再添加一个条件,使四边形ABCD是矩形.你添加的条件是 .(写出一种即可)
在△AEF和△DEC中,∠AFE=∠DCE,∠AEF=∠DEC,AE=DE,∴△AEF≌△DEC(AAS),∴AF=DC.∵AF=BD,∴BD=DC;(2)当△ABC满足AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形.∴AB=AC,BD=DC,∴∠ADB=90°.∴四边形AFBD是矩形.方法总结:本题综合考查了矩形和全等三角形的判定方法,明确有一个角是直角的平行四边形是矩形是解本题的关键.三、板书设计矩形的判定对角线相等的平行四边形是矩形三个角是直角的四边形是矩形有一个角是直角的平行四边形是矩形(定义)通过探索与交流,得出矩形的判定定理,使学生亲身经历知识的发生过程,并会运用定理解决相关问题.通过开放式命题,尝试从不同角度寻求解决问题的方法.通过动手实践、合作探索、小组交流,培养学生的逻辑推理能力.
1. _____________________________________________2. _____________________________________________你会计算菱形的周长吗?三、例题精讲例1.课本3页例1例2.已知:在菱形ABCD中,对角线AC、BD相交于点O,E、F、G、H分别是菱形ABCD各边的中点,求证:OE=OF=OG=OH.四、课堂检测:1.已知四边形ABCD是菱形,O是两条对角线的交点,AC=8cm,DB=6cm,菱形的边长是________cm.2.菱形ABCD的周长为40cm,两条对角线AC:BD=4:3,那么对角线AC=______cm,BD=______cm.3.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为 4.已知菱形的面积为30平方厘米,如果一条对角线长为12厘米,则别一条对角线长为________厘米.5.菱形的两条对角线把菱形分成全等的直角三角形的个数是( ).(A)1个 (B)2个 (C)3个 (D)4个6.在菱形ABCD中,CE⊥AB,E为垂足,BC=2,BE=1,求菱形的周长和面积
方法三:一个同学先画两条等长的线段AB、AD,然后分别以B、D为圆心,AB为半径画弧,得到两弧的交点C,连接BC、CD,就得到了一个四边形,猜一猜,这是什么四边形?请你画一画。通过探究,得到: 的四边形是菱形。证明上述结论:三、例题巩固课本6页例2 四、课堂检测1、下列判别错误的是( )A.对角线互相垂直,平分的四边形是菱形. B、对角线互相垂直的平行四边形是菱形C.有一条对角线平分一组对角的四边形是菱形. D.邻边相等的平行四边形是菱形.2、下列条件中,可以判定一个四边形是菱形的是( )A.两条对角线相等 B.两条对角线互相垂直C.两条对角线相等且垂直 D.两条对角线互相垂直平分3、要判断一个四边形是菱形,可以首先判断它是一个平行四边形,然后再判定这个四边形的一组__________或两条对角线__________.4、已知:如图 ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F求证:四边形AFCE是菱形
(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形.又∵EF=BE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为23,∴菱形的面积为4×23=83.方法总结:判定一个四边形是菱形时,要结合条件灵活选择方法.如果可以证明四条边相等,可直接证出菱形;如果只能证出一组邻边相等或对角线互相垂直,可以尝试证出这个四边形是平行四边形,然后用定义法或判定定理1来证明菱形.三、板书设计菱形的判 定有一组邻边相等的平行四边形是菱形(定义)四边相等的四边形是菱形对角线互相垂直的平行四边形是菱形对角线互相垂直平分的四边形是菱形 经历菱形的证明、猜想的过程,进一步提高学生的推理论证能力,体会证明过程中所运用的归纳概括以及转化等数学方法.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.
我们知道圆是一个旋转对称图形,无论绕圆心旋转多少度,它都能与自身重合,对称中心即为其圆心.将图中的扇形AOB(阴影部分)绕点O逆时针旋转某个角度,画出旋转之后的图形,比较前后两个图形,你能发现什么?二、合作探究探究点:圆心角、弧、弦之间的关系【类型一】 利用圆心角、弧、弦之间的关系证明线段相等如图,M为⊙O上一点,MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求证:MD=ME.解析:连接MO,根据等弧对等圆心角,则∠MOD=∠MOE,再由角平分线的性质,得出MD=ME.证明:连接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵MD⊥OA于D,ME⊥OB于E,∴MD=ME.方法总结:圆心角、弧、弦之间相等关系的定理可以用来证明线段相等.本题考查了等弧对等圆心角,以及角平分线的性质.
方法总结:本题考查了幂的乘方的逆用及同底数幂的乘法,整体代入求解也比较关键.【类型三】 逆用幂的乘方结合方程思想求值已知221=8y+1,9y=3x-9,则代数式13x+12y的值为________.解析:由221=8y+1,9y=3x-9得221=23(y+1),32y=3x-9,则21=3(y+1),2y=x-9,解得x=21,y=6,故代数式13x+12y=7+3=10.故答案为10.方法总结:根据幂的乘方的逆运算进行转化得到x和y的方程组,求出x、y,再计算代数式.三、板书设计1.幂的乘方法则:幂的乘方,底数不变,指数相乘.即(am)n=amn(m,n都是正整数).2.幂的乘方的运用幂的乘方公式的探究方式和前节类似,因此在教学中可以利用该优势展开教学,在探究过程中可以进一步发挥学生的主动性,尽可能地让学生在已有知识的基础上,通过自主探究,获得幂的乘方运算的感性认识,进而理解运算法则
解析:平行线中的拐点问题,通常需过拐点作平行线.解:(1)∠AED=∠BAE+∠CDE.理由如下:过点E作EG∥AB.∵AB∥CD,∴AB∥EG∥CD,∴∠AEG=∠BAE,∠DEG=∠CDE.∵∠AED=∠AEG+∠DEG,∴∠AED=∠BAE+∠CDE;(2)同(1)可得∠AFD=∠BAF+∠CDF.∵∠BAF=2∠EAF,∠CDF=2∠EDF,∴∠BAE+∠CDE=32∠BAF+32∠CDF,∴∠AED=32∠AFD.方法总结:无论平行线中的何种问题,都可转化到基本模型中去解决,把复杂的问题分解到简单模型中,问题便迎刃而解.三、板书设计平行线的性质:性质1:两条平行线被第三条直线所截,同位角相等;性质2:两条平行线被第三条直线所截,内错角相等;性质3:两条平行线被第三条直线所截,同旁内角互补.平行线的性质是几何证明的基础,教学中注意基本的推理格式的书写,培养学生的逻辑思维能力,鼓励学生勇于尝试.在课堂上,力求体现学生的主体地位,把课堂交给学生,让学生在动口、动手、动脑中学数学
解析:根据“全等三角形的对应角相等”,可知∠EAD=∠CAB,故∠EAB=∠EAD+∠CAD+∠CAB=2∠CAB+10°=120°,即∠CAB=55°.然后在△ACB中利用三角形内角和定理来求∠ACB的度数.解:∵△ABC≌△ADE,∴∠CAB=∠EAD.∵∠EAB=120°,∠CAD=10°,∴∠EAB=∠EAD+∠CAD+∠CAB=2∠CAB+10°=120°,∴∠CAB=55°.∵∠B=∠D=25°,∴∠ACB=180°-∠CAB-∠B=180°-55°-25°=100°.方法总结:本题将三角形内角和与全等三角形的性质综合考查,解答问题时要将所求的角与已知角通过全等及三角形内角之间的关系联系起来.三、板书设计1.全等形与全等三角形的概念:能够完全重合的图形叫做全等形;能够完全重合的三角形叫做全等三角形.2.全等三角形的性质:全等三角形的对应角、对应线段相等.首先展示全等形的图片,激发学生兴趣,从图中总结全等形和全等三角形的概念.最后总结全等三角形的性质,通过练习来理解全等三角形的性质并渗透符号语言推理.通过实例熟悉运用全等三角形的性质解决一些简单的实际问题
(一)、开始部分 首先,我播放《快乐小舞曲》,带领幼儿一起进入果园当中,小朋友们其乐融融,能够快快乐乐地进入活动场地开始活动。其次,我让幼儿说说果园里有什么,引导幼儿以观察的方式回答老师的提问。之后,我手指幼儿面前的三棵果树,让他们猜猜这三棵果树是什么树,引导幼儿以想象的方式回答。 (二)、基础部分 这一部分正式进入散文诗欣赏,我先读一遍,幼儿欣赏,理解大概内容,然后我提出一系列有关果树的问题,引导幼儿以听的方式来回答,并鼓励他们大胆讲述。 这一部分,让幼儿边理解边感受散文诗的意境美,从而让他们知道白白的是梨花,粉色的是桃花,红红的是苹果花,黄澄澄的是大梨,粉粉的是桃子,红红的是大苹果,通过幼儿自由讲述和老师的适当提示,让他们初步了解一年四季果树的变化。 以上都是静态教学,然后我讲述散文诗第二遍,让幼儿说说有哪些小动物,他们在干什么。根据他们的回答,我发给他们头饰,让他们表演,培养他们大胆的表演能力。最后提到的采摘丰收果实的人们也是让幼儿表演采果实,体验丰收的快乐。这些是动态教学。 教学中动静结合,可激发幼儿的兴趣,也可让活动开展地生动、丰富。
中华民族的脊梁各位老师、同学们:大家早上好!很荣幸能代表高233班在国旗下讲话,今天,我演讲的题目是《中华民族的脊梁》。登上昆仑,才知道什么叫高峻,来到虎门才懂得什么叫雄伟。翻开中国近代史这幅长长的画卷,聚集了多少哀愁,多少屈辱、多少痛苦,这些哀愁、屈辱、痛苦比黄河还要曲折,比大海还要苦涩,南京大屠杀,三十万生命无一幸存。“处处扼咽喉,天涯何处是是神州?”堂堂中华民族在侵略者的铁蹄下呻吟。“凉该读尽支那史,几个男儿非牛马?”面对面山河破碎,国将不国,灾民流离,哀鸿遍野的现实,为什么中华民族的强国梦难以实现,痛心疾首之余,我们需要认真想一想,这是为什么?中华民族的希望在哪里?人们在漫漫长夜,盼望着、等待着……这一天终于来了!
小说精心设计,以“我”回忆往事的视角来叙述,其他人物的态度和行动,都是从“我”的眼里看到的;对其他人物的感受和评述,也都是从“我”的角度表达的。这样写既有利于拉开适当的距离,为小说主题的展开留下空间,同时也有利于安排情节的曲折变化,避免多余的解释说明。【设计意图】内容决定形式,形式服务内容。在逐层深入理解课文时,穿插对写作技巧的讲解与点拨,要求学生在朗读中细细品味,有助于学生深入学习与运用。四、拓展,悟人生1.拓展阅读课外阅读《项链》。2.发散思维有一首歌里唱道:“有钱没钱,回家过年。”假如你是若瑟夫,当你走到于勒面前时,你会对他说些什么呢?【设计意图】学以致用,启迪人生智慧,形成正确的人生观、价值观。结束语:金钱扭曲了人性,撕裂了亲情。观照生活,思索人生,我们会发现亲情带来的温暖远胜于金钱,让我们一起说——让人间充满爱!
意境是什么?意境是艺术的灵魂。是客观事物精粹部分的集中,加上人的思想感情的陶铸,经过高度艺术加工达到情景交融、借景抒情,从而表现出来的艺术境界、诗的境界,就叫作意境。艺术从生活中来,但它不等同于生活。艺术与生活是辩证关系,生活是艺术唯一的源泉,艺术来源于生活,是现实生活的反映,但艺术中反映出来的生活,可以而且应当比实际的生活更高,更典型,更理想。就是说,艺术又要求对生活进行高度集中和概括,要求典型化、理想化,从而创造出比现实更美好、更富有诗意、更理想的艺术境界,创造出革命时代新的意境。这是革命的现实主义与革命的浪漫主义相结合的创作方法最基本的一条,也是其他的创作方法所不及、难以充分达到的。千余年来,中国山水画为什么那么发达,这与河山壮丽是分不开的。中国向来把江山、河山、山水作为祖国的象征或代词。
《皇帝的新装》这篇童话写于1837年。18世纪末19世纪初,西欧资本主义得到迅速发展,而处于北欧边陲的丹麦却还是个君主立宪制国家。拿破仑战争最激烈的时候,丹麦统治阶级利用英法矛盾,以中立地位大搞海上粮食贸易,引起英国不满,英国要求丹麦交出从事贸易的舰队和商船,成为英国的附庸国。丹麦拒绝这一要求,英军于1807年炮击哥本哈根,摧毁了丹麦的舰队,丹麦便由中立倒向拿破仑一边,成为交战国。8年后,拿破仑战败,丹麦也成为战败国而失去广大领土,耗尽了钱财,银行倒闭,农村萧条,刚刚兴起的工业也全部破产,丹麦最终成了英国的附庸国。丹麦人民身受本国封建阶级和英国资产阶级的双重剥削,过着饥寒交迫的贫困生活,而封建统治阶级则穷奢极欲,挥霍无度。面对这样的社会现实,安徒生根据西班牙一则民间故事改编了《皇帝的新装》,把揭露的锋芒直指封建统治阶级的头子,并无情地嘲讽了贵族、宫廷的丑恶行径,深刻地解剖了当时社会的病状。【资料链接】
文中三次写到“看花”,有什么作用?第一次写“看花”是春天,母亲提议去北海看花,想让“我”在盛开的春花中感受生命的美好,重新扬起生活的风帆;第二次写“看花”是秋天,母亲央求“我”去北海看菊花,她想在所剩不多的日子里陪“我”去看看象征生命力的菊花,渴望“我”从绝望中走出来;第三次写“看花”是在秋天,“我”和妹妹去看花,实现了母亲临终的愿望。菊花象征作者对生命的渴望与眷恋。作者之所以浓墨重彩地写菊花,恰恰是对母亲生前那句“好好儿活”的深情解读,进一步深化了主题。三次看花,串起了人物的情感轨迹,让我们体会到“看花”已不仅仅是看菊花,而是象征着母亲的人生信念:无论命运怎样,人生如何,都要活得坚韧,活出尊严,活出生命的价值。“好好儿活”——是对瘫痪儿子与未成年女儿的深深期待,这里的母爱也不仅仅是生活中的关心爱护,更是母亲博大的胸怀和人生信念。