如图,课外数学小组要测量小山坡上塔的高度DE,DE所在直线与水平线AN垂直.他们在A处测得塔尖D的仰角为45°,再沿着射线AN方向前进50米到达B处,此时测得塔尖D的仰角∠DBN=61.4°,小山坡坡顶E的仰角∠EBN=25.6°.现在请你帮助课外活动小组算一算塔高DE大约是多少米(结果精确到个位).解析:根据锐角三角函数关系表示出BF的长,进而求出EF的长,得出答案.解:延长DE交AB延长线于点F,则∠DFA=90°.∵∠A=45°,∴AF=DF.设EF=x,∵tan25.6°=EFBF≈0.5,∴BF=2x,则DF=AF=50+2x,故tan61.4°=DFBF=50+2x2x=1.8,解得x≈31.故DE=DF-EF=50+31×2-31=81(米).所以,塔高DE大约是81米.方法总结:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.
然后,她沿着坡度是i=1∶1(即tan∠CED=1)的斜坡步行15分钟抵达C处,此时,测得A点的俯角是15°.已知小丽的步行速度是18米/分,图中点A、B、E、D、C在同一平面内,且点D、E、B在同一水平直线上.求出娱乐场地所在山坡AE的长度(参考数据:2≈1.41,结果精确到0.1米).解析:作辅助线EF⊥AC于点F,根据速度乘以时间得出CE的长度,通过坡度得到∠ECF=30°,通过平角减去其他角从而得到∠AEF=45°,即可求出AE的长度.解:作EF⊥AC于点F,根据题意,得CE=18×15=270(米). ∵tan∠CED=1,∴∠CED=∠DCE=45°.∵∠ECF=90°-45°-15°=30°,∴EF=12CE=135米.∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°-45°-60°-30°=45°,∴AE=2EF=1352≈190.4(米).所以,娱乐场地所在山坡AE的长度约为190.4米.方法总结:解决本题的关键是能借助仰角、俯角和坡度构造直角三角形,并结合图形利用三角函数解直角三角形.
(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?解析:(1)分1≤x<50和50≤x≤90两种情况进行讨论,利用利润=每件的利润×销售的件数,即可求得函数的解析式;(2)利用(1)得到的两个解析式,结合二次函数与一次函数的性质分别求得最值,然后两种情况下取最大的即可.解:(1)当1≤x<50时,y=(200-2x)(x+40-30)=-2x2+180x+2000;当50≤x≤90时,y=(200-2x)(90-30)=-120x+12000.综上所述,y=-2x2+180x+2000(1≤x<50),-120x+12000(50≤x≤90);(2)当1≤x<50时,y=-2x2+180x+2000,二次函数开口向下,对称轴为x=45,当x=45时,y最大=-2×452+180×45+2000=6050;当50≤x≤90时,y=-120x+12000,y随x的增大而减小,当x=50时,y最大=6000.综上所述,销售该商品第45天时,当天销售利润最大,最大利润是6050元.方法总结:本题考查了二次函数的应用,读懂表格信息、理解利润的计算方法,即利润=每件的利润×销售的件数,是解决问题的关键.
如图所示,要用长20m的铁栏杆,围成一个一面靠墙的长方形花圃,怎么围才能使围成的花圃的面积最大?如果花圃垂直于墙的一边长为xm,花圃的面积为ym2,那么y=x(20-2x).试问:x为何值时,才能使y的值最大?二、合作探究探究点一:二次函数y=ax2+bx+c的最值已知二次函数y=ax2+4x+a-1的最小值为2,则a的值为()A.3 B.-1 C.4 D.4或-1解析:∵二次函数y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故选C.方法总结:求二次函数的最大(小)值有三种方法,第一种是由图象直接得出,第二种是配方法,第三种是公式法.变式训练:见《学练优》本课时练习“课堂达标训练” 第1题探究点二:利用二次函数求图形面积的最大值【类型一】 利用二次函数求矩形面积的最大值
解析:正多边形的边心距、半径、边长的一半正好构成直角三角形,根据勾股定理就可以求解.解:(1)设正三角形ABC的中心为O,BC切⊙O于点D,连接OB、OD,则OD⊥BC,BD=DC=a.则S圆环=π·OB2-π·OD2=πOB2-OD2=π·BD2=πa2;(2)只需测出弦BC(或AC,AB)的长;(3)结果一样,即S圆环=πa2;(4)S圆环=πa2.方法总结:正多边形的计算,一般是过中心作边的垂线,连接半径,把内切圆半径、外接圆半径、边心距,中心角之间的计算转化为解直角三角形.变式训练:见《学练优》本课时练习“课后巩固提升”第4题【类型四】 圆内接正多边形的实际运用如图①,有一个宝塔,它的地基边缘是周长为26m的正五边形ABCDE(如图②),点O为中心(下列各题结果精确到0.1m).(1)求地基的中心到边缘的距离;(2)已知塔的墙体宽为1m,现要在塔的底层中心建一圆形底座的塑像,并且留出最窄处为1.6m的观光通道,问塑像底座的半径最大是多少?
解析:点E是BC︵的中点,根据圆周角定理的推论可得∠BAE=∠CBE,可证得△BDE∽△ABE,然后由相似三角形的对应边成比例得结论.证明:∵点E是BC︵的中点,即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法总结:圆周角定理的推论是和角有关系的定理,所以在圆中,解决相似三角形的问题常常考虑此定理.三、板书设计圆周角和圆心角的关系1.圆周角的概念2.圆周角定理3.圆周角定理的推论本节课的重点是圆周角与圆心角的关系,难点是应用所学知识灵活解题.在本节课的教学中,学生对圆周角的概念和“同弧所对的圆周角相等”这一性质较容易掌握,理解起来问题也不大,而对圆周角与圆心角的关系理解起来则相对困难,因此在教学过程中要着重引导学生对这一知识的探索与理解.还有些学生在应用知识解决问题的过程中往往会忽略同弧的问题,在教学过程中要对此予以足够的强调,借助多媒体加以突出.
解析:(1)由切线的性质得AB⊥BF,因为CD⊥AB,所以CD∥BF,由平行线的性质得∠ADC=∠F,由圆周角定理的推论得∠ABC=∠ADC,于是证得∠ABC=∠F;(2)连接BD.由直径所对的圆周角是直角得∠ADB=90°,因为∠ABF=90°,然后运用解直角三角形解答.(1)证明:∵BF为⊙O的切线,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半径为203.方法总结:运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
1、认真读课文,边读边想课文每个自然段都写了什么,给课文划分段落。2、学生交流段落划分,说明分段理由。3、教师对照板书进行小结:这篇课文思路特别明晰,作者开门见山提出自己的观点,明确指出“真理诞生于一百个问号之后”这句话本身就是“真理”,然后概括地指出在千百年来的科学技术发展史上,那些定理、定律、学说都是在发现者、创造者解答了“一百个问号之后”才获得的,由此引出科学发展史上的三个有代表性的确凿事例,之后对三个典型事例作结,强调这三个事例“都是很平常的事情”,却从中发现了真理,最后指出科学发现的“偶然机遇”只能给有准备的人,而不会给任何一个懒汉。
1、镇定第一。落水后应保持镇定,胡乱举手或挣扎反会使身体下沉、呛水而淹溺。2、仰泳露鼻。可采取头向后仰、面部向上的仰泳法,使口鼻露出水面进行呼吸。3、深吸浅呼。吸气要深,呼气要浅。4、减轻自重。及时甩掉鞋子和口袋里的重物,但不要脱掉衣服,因为它会产生一定的浮力,对你有很大帮助。5、观察周围。假如周围有木板,应抓住,借用木板的浮力使自己的身体尽量往上浮。6、缓解“抽筋”。若肌肉痉挛(“抽筋”),用手握住痉挛肢体的远端,做反复屈伸运动。7、保存体力。会游泳者在落水自救的过程中,应注意防止“抽筋”,并保存体力。8、配合施救。如果有人跳水相救,千万不可死死抱住救助者不放,而应尽量放松,配合救助者把你带到岸边。
学习过程:一、自主预习课本P175——186的内容,独立完成课后练习1、2、3、4、5后,与小组同学交流(课前完成)二、回顾课本,思考下列问题:1.SAS定理的内容2.ASA定理的内容3.SSS定理的内容4.几何证明的过程的步骤
1、问题1的设计基于学生已有的一元一次方程的知识,学生独立思考问题,同学会考虑到题中涉及到等量关系,从中抽象出一元一次方程模型;同学可能想不到用方程的方法解决,可以由组长带领进行讨论探究.2、问题2的设计为了引出二元一次方程,但由于同学的知识有限,可能有个别同学会设两个未知数,列出二元一次方程;如果没有生列二元一次方程,教师可引导学生分析题目中有两个未知量,我们可设两个未知数列方程,再次从中抽象出方程模型.根据方程特点让生给方程起名,提高学生学习兴趣.3、定义的归纳,先请同学们观察所列的方程,找出它们的共同点,并用自己的语言描述,组内交流看法;如果学生概括的不完善,请其他同学补充. 交流完善给出定义,教师规范定义.
1、方程的定义1)像这种用等号“=”来表示相等关系的式子,叫等式。(老师给出定义。)2)请大家观察左边的这些式子,看看它们有什么共同的特征?(老师提出问题。)3)列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出含有未知数的等式叫做方程。(学生思考后,老师给出新学内容方程的定义。)4)判断方程的两个关键要素: ①有未知数 ②是等式(老师提问,并给出。)
(一)视频分享导入搜集播放幼儿游泳、戏水视频,重点选取贴近生活、具有代表性的场景。1、互动问答师(问):小朋友们* 你喜欢玩水吗?* 在哪里,和谁,发生了什么趣的故事?* 有没有遇到过危险呢 ……2、回答分享小朋友踊跃发言分享,老师给予肯定和鼓励,并奖励小红花等
(2)依托各方力量,办好家长学校 学校要重视家长学校这块教育主阵地的建设。首先成立家长学校领导机构——家长委员会,做到定期召开家长委员会会议,通报学校工作计划及取得的成绩、听取家长委员会成员的合理化建议等。依托家长委员会,组织专题研讨,为家校沟通、亲子沟通提供平台。同时从家庭教育的视角,与家长们一起思考如何提高教育的有效性。 为加强教育的效果,一方面学校要求教师访问学生家庭,作好了解、协调工作,防微杜渐。另一方面,还要通过家长学校这种组织机构治标治本,对学生家长有针对、有系统、分层次地进行家庭教育的辅导,通过家长会、辅导讲座、交流会、家长信、校刊小报等多种途径和手段,帮助家长树立正确、新型的家庭教育观念,传授家长科学、合理的育人常识和技巧,提高家庭教育水平。
2、学会正确认读i、u、ü的带调韵母。知道ü上标声调时,上面的小圆点不写。3、会在四线格里抄写i、u、ü三个单韵母。课时安排:2课时第一课时 教学目标:教学单韵母i、u并抄写。 教学过程: 一、 复习检查。 1、猜谜语。 (1)白鹅倒影是什么韵母? (2)圆脸小姑娘,小辫右边扎。这是什么韵母? (3)像个圆圈是什么韵母? 2、抽读字母卡片。 二、 教学单韵母i。 1、看图说话引出i。 图上画着什么?图上画着一件衣服。i的发音与“衣”的音相同。 2、教学i的发音,认清字形。 (1)发音要领:发音时嘴比发e时开得更小,只留一条小缝,舌前部升高,接近上腭,舌尖抵住下齿背,让气从舌尖和上腭中间自然流出。 (2)教师范读、领读。 (3)记忆字形。 i像什么?顺口溜:“像支蜡烛i、i、i。” 3、书写指导:先写竖,再写点,两笔写成。 三、 教学单韵母u。 1、看图说话引出u。 图上画着什么?“树上有一只乌鸦。”乌鸦的“乌”就是u。 2、教学u的发音,认清字形。 (1)发音要领:发音时把嘴唇收拢,嘴唇比发o时更圆更小,舌尖后缩,舌根抬高,让气从小洞中出来。 (2)教师范读,领读。 (3)记忆字形。 可用顺口溜:“像只茶杯u、u、u。” 3、书写指导:u一笔写成。 四、 巩固复习。
溺水是游泳或掉入水坑、水井等常见的意外事故,一般发生溺水的地点通常在:游泳池、水库、水坑、池塘、河流、溪边、海边等场所。夏天是溺水事故的多发季节。每年夏天都有游泳溺水身亡事故发生。在溺水者当中,有的是不会游泳的人,也有的是一些会游泳、水性好的人。当发现有人落水时,救助者不要贸然去救人,因为一旦被落水者抓住将十分危险。在水中与落水者纠缠不但会消耗救助者的大量体力,有时甚至会导致救助者体力耗尽最终丧命。如果当时情况十分紧急,而救助者又具备一定的救护技巧,那么救助者在下水前应尽快脱去衣裤和鞋子,在向落水者接近时,要尽量避免被落水者抓住。 综上所述,溺水是非常危险是,在日常生活中要提高安全意识,安全第一,防患于未然。水无情,人有情。其实,只要我们在生活中注意各种游水、戏水事项,提高安全防范意识,学会在遭遇溺水懂得如何自救和他人遭遇溺水时如何抢救,溺水事件还是可以防止的。
教育目的:1、让学生通过发生在生活当中真实的交通事故,明确其危害性和造成的原因。2、能够在日常生活当中自觉的遵守交通规则,懂得生命的宝贵,能够珍爱自己的生命。教学过程:一、导入师言:交通安全,一个永恒的话题。交通安全,一个涉及人生质量、家庭幸福的话题。1886年,当德国人卡尔?奔驰发明世界上第一辆以汽油做燃料的机动车以来,人类在向现代文明迈进的同时,也随之带来了交通事故这一灰色阴影。一个活蹦乱跳的躯体在一瞬间成为车轮下的亡灵,一个好端端的家庭因为惨痛的车祸而支离破碎,一百多年来死于车祸、伤残等交通事故的人数触目惊心,由此而造成的经济损失更是让人叹息。
教学目标:1、教育学生遵守课堂纪律,遵守课间活动的秩序,做一个文明有礼貌的小学生。2、进一步增强学生的安全意识和自我保护意识;掌握一些自救自护的本领;珍惜生命,健康成长。教学重点:树立火灾自护.自救的观念.增强安全意识。教育学生能自觉遵守学校的各项常规。教学难点:教育学生能长久地做到遵守常规,注意安全教学过程:一、常规教育(一) 谈话引入:同学们是三年级的学生了,对上课的基本要求已有初步的了解。但在这段时间里,同学们仍然有些做得不好的地方,这堂班会课我们就来谈谈怎样才能遵守学校的各项常规。(二) 看图,说一说,议一议1 上课铃响了,我们应该怎么做?(做好课前准备,安静等老师来上课)2 上课可以随便说话吗?有事情怎么办?(先举手,再发言)
二.学生集会、集体活动、课间活动中应该注意的安全事项。上下楼梯要注意什么?1、 不要因为赶时间而奔跑。2、 在人多的地方一定要扶好栏杆。3、 整队下楼时要与同学保持一定距离。4、 上下楼时不要将手放在兜里。5、 不要在楼道内弯腰拾东西、系鞋带。6、 上下楼靠右行。集体活动中要一切行动听指挥,遵守时间,遵守纪律,遵守秩序,语言文明。课间活动应当注意什么?l.室外空气新鲜,课间活动应当尽量在室外,但不要远离教室,以免耽误下面的课程。2. 活动的强度要适当,不要做剧烈的活动,保证继续上课时不疲劳、精力集中、精神饱满。3.活动的方式要简便易行,如做做操等。4.活动要注意安全,切忌猛追猛打,要避免发生扭伤、碰伤等危险。三.学生饮食、就餐的安全注意事项。不吃过期、腐烂食品,有毒的药物(如杀虫剂、鼠药等)要放在安全的地方。禁止购买用竹签串起的食物:油反复使用,竹签容易伤人,食品卫生得不到保证,油炸食品有致癌物质。
(三)雷电 夏季,经常会有雷雨大风,应该预防雷电袭击。1.在空旷田野上,不要使自己成为尖端,也就是说,要尽量降低自身高度,不应该把铁锹、锄头、高尔夫球棍等带有金属的物体扛在肩上高过头顶。2.在市郊地区,最好躲入一栋装有金属门窗或设有避雷针的建筑物内,也可躲进有金属车身的汽车内。3.在稠密树林中,最好找一块林中空地,双脚并拢蹲下;在大树下躲雷雨是极不安全的。此外,不要在高楼烟囱下、地势高的山丘处停留,以防不测。4.在山间旅游,如路遇山洞也可进入避雷。5.打雷时,最好不要到湖泊、江河,海滩等处钓鱼和划船,也不要去游泳。6.打雷时,在平坦的开阔地带,最好不要骑马、骑自行车、驾驶摩托车或开拖拉机。7.打雷时,在室内相对比较安全,但要紧闭门窗,防止危险的侧击雷和球形闪电侵入。