二、探究交流,引导概括 —— 方程为了培养学生的发现和抽象概括能力,同时进一步理解方程的意义,我让学生分组学习,引导他们先找出②20+χ=100,⑥ 3χ=180,⑧100+2χ=3×50像上面三臄等式的有共同特征,然后归纳概括什么叫做方程?最后得出:像这样的含有未知数的等式,叫做方程。三、讨论比较,辨析、概念 —— 等式与方程的关系为了体现学生的主体性,培养学生的合作意识,同时让学生在解决问题的过程中得到创造的乐趣。通过四人合作用自己的方法创作 “ 方程 ” 与 “ 等式 ” 的关系图,并用自己的话说一说 “ 等式 ” 与 “ 方程 ” 的关系:方程一定是等式,但等式不一定是方程。四、巩固深化,拓展思维 —— 练习1 、“做一做”:2、判断是否方程3、“方程一定是等式,等式也一定是方程”这句话对吗?4、叫学生用图来表示等式和方程的关系。
3.导入新课师:在实际应用中,小数乘法乘得的积往往不需要保留很多的小数位数,这时可以根据需要,用“四舍五人法”保留一定的小数位数,求出积的近似值。(板书课题:积的近似值)设计意图:知识的学习过程有一个最近发展区,通过口算和保留一定位数的小数这两块复习,可以训练孩子们的口算技能和唤起用“四舍五入”法求近似数的方法,为求积的近似数进行正迁移。二、探索情境问题,形成求积的近似值的方法1.创设情境问题,并理解题意[多媒体展示:人与狗的嗅觉细胞介绍情境动画,引出情境问题]人的嗅觉细胞约有0.049亿个,狗的嗅觉细胞个数是人的45倍,狗约有多少个嗅觉细胞?(得数保留一位小数)师:请同学们自由读题,并说说已知条件和所求的问题。学情预设:情境问题的已知和所求的问题都很明朗,只要能理解求一个数的几倍是多少用乘法计算即可。
这样让学生的想象建立在一定的表象基础上,不是凭空去想像。学生经历了猜测、分析推理,最后再实物验证的过程。同时,发展了学生的空间想像力和思维能力。)我继续追问:你们能不能想出一个好办法让大家知道这究竟是什么物体吗?这一富有挑战性的问题,激发了学生积极主动的去思维。从而探究出解决问题的方法是还要知道另一个面或两个面的形状。2、有了练习八第2题做铺垫,再小组合作完成39页“做一做”就很容易了,这样也体现了知识出现的层次性。)为了帮助学生把零散的知识进行归纳梳理,同时培养学生从不同角度欣赏他人的良好心态。接下来我对应用部分进行了小结:我们通过观察发现从同一个方向观察不同形状的立体图形,得到的形状也可能是相同的。因此,我们不能只根据一个方向看到的形状就确定是什么立体图形,只有把不同方向看到的形状进行综合,才能进行正确的判断。我们要全面了解一件事物或一个人也要懂得从不同的角度去观察、思考,不能片面的看待。
《数学课程标准》中指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。只是在学生需要时给予恰当的帮助。”通过不同形式的习题帮助学生掌握新知。进一步突出本节课的重难点。尤其是创新题,1、编两个不同的方程,使方程的解都是ⅹ=6,2、在□中填入合适的数,使等式成立。具有一定的挑战性.只有当自己的观点与集体不一致时,才会产生要证实自己思想的欲望,从而激活学生思维的火花.但是提出挑战并不意味着要难倒学生,而是要激励学生在学习的过程中不断地去获得成功的体验.学生是学习的主体,只有通过学生自身的”再创造”活动,才能纳入其认知结构中,才可能成为有效的知识. 在教与学的活动中,有老师的组织、参与和指导,有同伴的合作、交流与探索。 “授之以鱼,不如授之以渔。”虽只有一字只差,却是两种截然不同的教育理念。我选择后者。这样既培养了孩子们分析、推理能力和思维的灵活性,又为学生的新知建构拓展出更大的空间!
一、说教材:稍复杂的方程的教学任务例1教学解方程ax±b=c及其应用(列方程解形如ax±b=c的问题)(1)把解方程和用方程解决问题有机结合,在解决问题的过程中解较复杂的方程。(2)结合现实素材(足球上两种颜色皮的块数)引出,这种问题用算术方法解决思考起来比较麻烦。(3解方程的过程其实是由解若干基本方程构成的(y-20=4,2x=24),需要强调把2x看成一个整体。(4)可以列出不同的方程,如2x-4=20,关键是使学生理解数量关系。二、说学生:学生在前面已经学习了简单的方程数量关系,及简单方程式的解法,而且我在前面的教学中已经笨鸟先飞,让学生接触了形如:ax±b=c的方程式。三、说教法:根据学生的实际情况,我准备在教学过程中,重点讲解稍复杂方程式的数量关系式的分析研究,让学生根据应用题的题意列出正确的数量关系式。
1.数字编码越来越重要,了解编码的含义,会给人们的生活、工作带来很多的便利。公安机关常常利用一些编码侦破案件。请同学们看个短片,仔细观察,你能找出对破案有用的线索并说出理由吗?生答。是的,公安人员根据这些线索很快将犯罪嫌疑人抓获。2.运用数字或符合来描述事物可以更简洁准确。看到这个号码不用知道名字就能找到这个人。首先请同学们仔细想一想,号码中要体现哪些方面的内容?先自己想再到小组中交流,组长记录下讨论的结果。生讨论结束后师实物出示结果,追问:①其他小组还有什么不同意见吗?集体讨论得出结果:编入入学时间、班级序号、班级学号、性别等。追问:②按什么顺序编排比较合理呢?生讨论得出按入学时间、班级序号、班级学号、性别的顺序。其次学生给自己编号码,师实物出示提问:看到这个号码,你能找到这个人吗?生根据号码找到这个人。
一、创设情境,引入新课。课开始,首先通过谈话问学生“你们喜欢玩游戏吗?”随后呈现例题的情境图,让学生在观察中清楚的知道袋中有4个红球和2个红球。然后教师揭示摸球游戏的规则:每次任意摸一个球,摸好后放回袋中,一共摸30次。摸到红球的次数多算小明赢;摸到黄球的次数多算小玲赢。接着让学生猜一猜谁赢得可能性大一些。预设学生都会猜是小明赢得可能性大一些。然后组织学生在小组里进行摸球实验,并把摸的结果记录在书本例题的第一个记录表中,验证刚才的猜想。在学生操作完之后,让学生明确小明赢得可能性大一些。接着引导学生产生质疑:“这样的游戏公平吗?为什么?”引导学生小结:口袋中红球的个数比较多,所以每次任意摸一个球,摸到红球的可能性要大,最后小明赢得可能性也就相应地要大一些,这样摸球的游戏规则是不公平的。在此基础上揭示课题并板书:游戏规则的公平性。
(二)注重学法。坚持“发展为本”,促进学生个性发展,并在时间和空间诸方面为学生提供发展的充分条件,以培养学生的实践能力、探索能力和创新精神为目标。在教学过程中,注意引导学生怎样有序观察、怎样概括结论,通过一系列活动,培养学生动手、动口、动脑的能力,使学生的观察能力、抽象概括能力逐步提高,教会学生学习。使学生通过自己的努力有所感受,有所感悟,有所发现,有所创新。小学生学习的数学应该是生活中的数学,是学生“自己的数学”。让学生在生活情境中“寻”数学,在实践操作中“做”数学,在现实生活中“用”数学。“学以致用”是学习的出发点和归宿点,也是学习数学的终结所在。让学生感到数学的有趣和可学,我们还应注重将数学知识提升应用到生活中,提高学生处理问题的实际能力,让学生真正做到会学习、会创造、会生活的一代新人,让数学课堂真正成为学生活动的、创造的课堂。三、优化程序,突出主体。
多年的小学教学经验告诉我:小学高年级的学生已有一定的自学能力,关键是看我们设置的情景和学生的生活是不是紧密联系,是不是唤起了学生的已有表象,并不和使用多种媒体有绝对联系。所以在学习例题中我引导学生自主探讨,从中发现问题,提出问题,最后独立解决问题,从而训练学生数学语言表达能力,发展学生的创造性思维。⒋质疑问难。㈣新知总结对上面所学知识,教师引导学生作一次归纳总结,让学生明确要求圆周长时,必须设法求得圆的直径或半径。这样使学生对求圆周长有明确的认识,进一步深化重点。㈤新知运用国家教委加强与改进小学数学教学的意见中提出:基础训练是使学生融会贯通地掌握知识,形成熟练技能和发展智力的重要手段。所以在本节练习中我以基础练习为主,适当补充了提高练习。
情感态度与价值观:1、能够在自己独立调查、分析、思考的基础上,积极参与小组讨论,敢于发表自己的意见。2、使学生能够综合应用所学的知识解决生活中的合理存款问题,感受数学与现实生活的密切关系。3、使学生认识到数学应用的广泛性并培养学生的投资意识教学重点及难点1、使学生能自主探索合理存款的最大收益问题的方法。2、综合应用所学的知识认真地分析数量关系,正确地解决日常生活中相关的实际问题。二、教学教法分析1.教法设计为了更好的突出重点,突破难点,完成教学目标,我结合学生的心理特点,首先采用“情境法”引出问题,再“学生汇报”调查结果。接着“师生互动探究”收益最大的存款方式,学生在“自主探索讨论”中掌握根据实际情况合理存款。同时利用多媒体等教学手段,激发学生的学习兴趣,帮助学生突破难点,提高课堂教学效率。2.学法指导本节课我重点立足于学生的“汇报”和“设计”,并采用学生整理信息口述、小组讨论,同桌讨论,合作计算等多种方法,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦。
⑴各种收入是什么意思?请举例说明;⑵什么叫税率?你能写出税率的公式吗?(税率=应纳税款÷各种收入×100%)3、介绍,纳税比率。税率的高低由国家统一规定,国家规定下面的一般纳税率是:⑴增值税13%或者17%⑵营业税务3%至20%(行业不同,标准不等,如交通行业5%,娱乐行业20%)⑶消费税务3%到50%不等。⑷个人所得税5%到45%不等。[意图:理解税种是教学中的难点,为此,采取适当分层,多举实例,观察思考,讨论交流,介绍说明等方法,让学生了解在现实生活中纳税的种类,为例题的教学做好铺垫。]活动三:学习纳税算法。1、出示例题:一家饭店十月份的营业额约是30万元。如果按营业额的5%缴纳营业税,这个饭店十月份应缴纳营业税约多少万元?2、读题理解:①按营业额5%缴纳营业税这句话你是怎样理解的?②如何列式计算?3、试做汇报:学生独立试尝试计算后,指名回答,教师板书:30×5%=1.5(万元)4、反馈练习:
3、整理数据,确定思路。在此认知基础上,紧接着引申出进一步研究的问题“各条跑道的起跑线应该相差多少米?”这个问题很难通过观察得到,需要学生收集相关数据,具体分析起跑线的位置与什么有关。使学生在汇报的过程中自然的发现:要确定跑道的起跑线,只要算出每相邻两条跑道的长度差就可以了。有的学生说,由于跑道的直道长度是相同的,所以算出弯道的长度差就可以了。在这里,教师或学生还可就图片说明半圆形跑道的直径是如何规定的,也就是里圆的直径加上两个跑道的宽度,以及跑道线的宽在这里忽略不计等问题向其它学生作一具体说明。在些环节,让学生进行观察,让他们自己发现规律,培养他们抽象概括能力和语言表达能力,在这个环节中教师要灵活的驾驽课堂,及时的抓住课堂中新生成的问题,使问题得以提升,把课堂推向了高潮.
1、课件出示教材例1的座位图。教师说明分组方法,从左往右依次为第1列、第2列、第3列直至第6列,从前往后依次为第1行、第2行直至第5行。请学生用自己的语言说说张亮的位置,要求尽可能简洁。当多位学生说完之后,教师组织全体学生评价哪种方法最简洁?当学生一直认同第2列第3行是最简洁的描述方法时,教师板书:第2列第3行。学生主动参与,体会最简表述方法的优越性。2、此时,教师再提出你能用这种方法描述王艳的位置吗?赵强呢?及时反馈,利用最简方法描述其他两位同学的位置。3、让学生完成一个记录游戏:教师快速地报出第几列第几行,让学生记录。学生可能记录不下来。这时教师提出我们要进一步简洁,不用文字,用数字和符号把它的位置记录下来。通过游戏使学生感受到“数对”产生的必要性。学生用自己的方式填写,教师可以选取几位代表在黑板上写,然后提出这些同学记录方法不一样,但有什么相同的地方?引导学生观察发现都有数字2和3,都表示第2列第3行,
学生的学习活动是一个生动活泼而富有个性的过程,为了把学生探索的阵地从课堂延伸到课外,引导学生主动地应用所学的知识和方法解决实际问题。我又设计了以下练习题:1、脑筋乐园:学校田径运动会即将举行,你有办法帮学校在操场上画出一个半径为50米的圆吗?2、(1)应用圆的知识解释下列现象,并写出来。为什么井盖也得做成圆形的?人们在围观的时,为什么会自然地围成圆形?(2)搜集有关圆的资料。贴到教室的数学角上,大家共享。3、画出各种大小、不同颜色的圆,组合出一幅美丽的图画。(设计意图)将学生探索的阵地从课堂延伸到课外,引导学生主动地应用所学知识和方法解决实际问题。(我认为把本句提前,这里删去,这样显得更连贯)(五)全课总结1、让学生谈收获,进行自我评价。2、我对整节课进行知识要点归纳和对学生学习情况进行评价。(这样总结,我注重学生的自我评价,自我体验和个性发展。即学生情感的体验和收获)(我认为蓝色字那句可删去)
(二)归纳小结。设问:今天学了什么?什么叫轴对称图形?怎样判断轴对称图形?什么叫对称轴?怎样找出轴对称图形的对称轴?(新课后的总结能起到画龙点睛的作用,同时有利于帮助学生理清知识结构,形成完整认识。)现在能把两侧大小不同的蝴蝶图画成一模一样吗?(教师拿着新课引入时的不对称的蝴蝶图)(前后呼应,解答课前疑难,目的是检查学生活用知识的情况。)全课小结:这节课,我通过五个环节的教学设计,既遵循了概念教学的规律,又符合小学生的认知特点,指导学生操作、观察、引导概括,获取新知;同时注重培养学生的形象思维和抽象思维。在教学过程中让学生动口、动手、动眼、动脑为主的学习方法,使学生学有兴趣、学有所获。附板书设计:轴对称图形如果一条图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。
知识与技能目标:1. 能正确说出三元一次方程(组)及其解的概念,能正确判别一组数是否是三元一次方程(组)的解;2. 会根据实际问题列出简单的三元一次方程或三元一次方程组。过程与方法目标:1. 通过加深对概念的理解,提高对“元”和“次”的认识。2. 能够逐步培养类比分析和归纳概括的能力,了解辩证统一的思想。情感态度与价值观目标:通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识。
教学要求1. 通过生活中的事例,学会解决“找次品”这类问题的思想方法。2. 体会解决问题策略的多样性及运用优化的方法解决问题的有效性。3. 感受到数学在日常生活中的广泛应用,培养应用意识和解决实际问题的能力。学情分析有化是一种重要的数学思想方法,可有效地分析和解决问题。本单元主要以“找次品”这一操作活动为载体,让学生通过观察、猜测、推理的方法感受解决问题策略的多样性,在此基础上,通过归纳、推理的方法体会运用优化策略解决问题的有效性,感受数学的魅力。这些内容对五年级的学生来说有一定的难度,所以应让学生在具体操作和试验中感悟、体会,由此使学生养成勤于思考、勇于探索的精神。教学重点学会解决“找次品”这类问题的方法。
1、同学们都听说过“曹冲称象”的故事吧!曹冲是怎么称出大象的重量的呢?让我们一起来回顾这一过程。2、曹冲是把大象的重量转换成了什么的重量呢?【他是把大象的重量转换成了与它重量相等的石头的重量】因为当时没有那么大的称能直接称出大象的重量,所以曹冲就用石头的重量代换了大象的重量,称出了石头的重量也就知道了大象的重量。3、同学们,你们大概还不知道吧,曹冲确实非常了不起,他运用了一种重要的数学思考方法——等量代换。【板书:数学广角——等量代换】这节课我们就来学习如何用“等量代换”的方法解决问题。二、引导探究发现规律1、今天这节课,老师给同学们带来了神秘的礼物。猜猜,什么样的孩子能够得到它们?全班?个大组,哪组的成员在参与过程中积极主动,认真动脑思考,遵章守纪,老师就奖励这个组一个青苹果,三个青苹果可以换一个红苹果,两个红苹果可以换取一份神秘的礼物。看看哪个组能得到礼物。有信心吗?老师相信你们是最棒的。
一、初步感知间隔的含义1、请同学们伸出右手,张开,数一数,5个手指之间有几个空格?在数学上,我们把 空格叫做间隔,也就是说,5个手指之间有几个间隔?4个间隔是在几个手指之间?2. 其实,这样的数学问题,在我们的生活中,随处可见。谁能举几个这样的例子3、看图:在画面上我们看到春天桃红柳绿,到处是一派生机勃勃的景象,你们知道吗?3月12日是什么日子,这一天全国上下到处都在植树,为保护环境献出自己的一份力量。 出示图:这里从头到尾栽了几棵树,数一数,它们之间又有几个间隔呢?你发现了什么?谁来说一说?同时板书。4、那你能像这样用一个图表示出来吗?请你们选择一种动手画一画吧!5、汇报:画了8棵树,他们之间有7个间隔数,9棵树之间有8个间隔。……6、你发现植树棵树和间隔数之间有什么规律呢?(自己先想想,再把你的想法和伙伴们互相交流一下)。反馈:谁来说说你的发现?评价:哦,这是你的发现……你还能用一个算式来概括。边板书边说:同学们都发现了从头到尾栽一排树时,植树棵树比间隔数多1,(指表格),也可以写成两端要栽时,植树棵数-间隔数+1,间隔数=植树棵树-1。
一、创设情境,猜想验证1.猜一猜,摸一摸。一盒粉笔若干支,5种不同的颜色。至少摸几支能保证:(1)2支同色的。(2)3支同色的。(3)4支同色的。2.想一想,摸一摸。请学生独立思考后,先在小组内交流自己的想法,再动手操作试一试,验证各自的猜想。在这个过程中,教师要加强巡视,要注意引导学生思考本题与前面所讲的抽屉原理有没有联系,如果有联系,有什么样的联系,应该把什么看成抽屉,要分放的东西是什么。二、观察比较,分析推理1.说一说,在比较中初步感知。2.想一想,在反思中学习推理。三、深入探究,沟通联系四、对比练习,感悟新知1.说一说。把红、黄、蓝、白四种颜色的球各10个放到一个袋子里。至少取多少个球,可以保证取到两个颜色相同的球?2.算一算。向东小学六年级共有370名学生,其中六(2)班有49名学生。请问下面两人说的对吗?为什么?五、总结评价六、布置作业