反思本课的教学过程,我有以下几点认识:1、重视学生的经验和体验,发展数感建构主义的学生观认为,学习不是教师把知识简单地传递给学生,而是学生自己建构知识的过程。在学习过程中,学生不是被动地接受信息,而是以原有知识经验为基础,主动地建构知识的意义。2、关注学生的思维,给学生较大的学习空间。引导学生自主探索的关键问题是要给学生多大的探究空间?我以引导学生自主探索作为根本出发点,设计具有较大探究问题的空间,如“你发现了什么?你有什么问题?”等,学生们结合直观图的观察,逐步发现分子比分母小的分数可以在一个单位“1”中表示,并且小于1;3.本节课最大的不足之处就是由于时间观念,把一节课的内容分开了,比如在教学中加入画一画内容可以加深学生从部分到整体的思维,使学生更近一步理解分数。
正方体的体积=棱长×棱长×棱长用字母a表示棱长,V=a×a×a.也可以写成a3读作a的立方.表示3个a相乘.不要误认为a与3相乘。写a3时3写在a的右上角要写小些.所以正方体的体积公式一般写成: V=a3(五)、巩固练习、运用公式练习是数学中教学巩固新知、形成技能、发展思维、提高学生分析问题、解决问题能力的有效手段,为了加强学生的理解,使学生能正确运用公式.我设计了多层次的练习。1、通过让学生完成看图求体积,这样有助于学生理解长方体正方体的体积与它的长宽高的关系,记住长方体的体积计算公式.2、我对安排了四个判断题,以加深学生对a的立方的理解和运用。3,解决实际问题,我安排了两道题目的是让学生所学新知识解决生活中的一些实际问题。
5、交流。学生可能有按照长方体的表面积的计算方法计算的。交流时注意引导学生比较哪种方法最简便,同时明确在正方体表面积的计算公式中为什么要乘6。7、质疑问难。8、揭示表面积的含义:刚才我们在求做长方体和正方体纸盒至少各要用多少硬纸板的问题时,都算出了它们6个面的面积之和,长方体和正方体6个面积的总面积,叫做它的表面积。(三)巩固练习,扩展应用。(10分)数学来源于生活,又服务于生活,学生学到的知识通过应用才能真正理解和掌握。1、书中的习题。15页练一练、17页1、5题。通过有目的的基本练习、巩固练习、综合练习,使学生进一步加深了对新知识的理解。强化了学生运用新知解决实际问题的能力,使学生形成了一定技能技巧。
此图是一个复式折线统计图,考察内容是根据统计图,进行数据的有效分析。(1)因为统计图中蓝色的折线表示学龄儿童,根据对学龄儿童的折线数据分析发现:1980年的学龄儿童最多,2000年的学龄儿童最少。(2)根据题目要求的分析:没上学的学龄儿童实际上是指:学龄儿童的人数与实际入学儿童人数的差。通过仔细观察统计图,可以直观地发现:1980年的学龄儿童和入学人数之间的差值最大,2000年的学龄儿童和入学人数之间的差值最小。所以,1980年没上学的学龄儿童最多,2000年的最少。(3)这一问比较开放,只要合理即可。三、练习二十七第9——14题解答指导:9. 81cm3=81ml 700dm3=0.7m3 560ml=0.56L 2.3dm3=2300cm310. 根据图示可知:把铁皮做成一个长方体,长方体的长为30—5×2=20(cm),宽为25—5×2=15(cm),高也就是切去的正方形的边长5cm。(1)求“这个盒子用了多少铁皮?”也就是求这个铁皮盒子(无盖)的表面积。
1、完成P78“做一做”第二题:读出下面的分数。2、完成P78“做一做”第一题:直接在书上的横线上写出对应的百分数。3、P79练习十九第4题:读出或写出报栏中的百分数。4、“做一做”第四题:学生根据自己的理解,说说分数和百分数在意义上有何不同。四、布置作业练习十九第1~3题。教学追记:本堂课,我从三个层次入手。第一层:联系生活实际引出百分数;第二层:理解百分数的具体含义;第三层:教学百分数的读写。三个层次,思路清晰,教学层次明显。其中,我把教学重点放在理解百分数的具体含义上,并及时与分数做了比较,教学结构较为严谨。2、百分数和分数、小数的互化教学目标:1、使学生理解并掌握百分数和小数互化的方法,能正确地把分数、小数化成百分数或把百分数化成分数、小数。2、在计算、比较,分析、探索百分数和分数、小数互化的规律的过程中,发展学生的抽象概括能力。3、通过探索百分数和分数、小数互化的规律,激发学生的数学探索意识。
D、师:通过刚才摸球,你认为我们能摸到黄球吗?(能)一定能摸到黄球吗?(不一定)也就是说我们摸到的可能是黄球,也可能是白球。(板书:可能)3、超级竞猜:出示挂图,学生抢答。(课本105页例1)三、拓展应用1、师:在我们生活中同样有很多事情都可以用这些表示可能性的词语来表述。2、完成例2。(1)出示挂图,小组讨论。(2)组织学生汇报交流、评价,你想说哪一幅图的内容就说哪一幅。3、你还能用这些词来说说生活里的事吗?先和同桌交流,然后组织汇报、评价。4、游戏:在三叠卡片中各选一张,按排列顺序组成一句话,说一说这件事发生的可能性。5、作业:在书上完成108页第1、2题。四、总结全课1、师:今天,我们主要学习了什么内容?2、小结:生活里可能性的事情还有很多很多,有些事情一定会发生,有些事情可能会发生,有些事情不可能会发生。希望同学们做生活中的有心人,找一找生活中的可能性。
(1)我们比较铅笔的长度,可以说这支铅笔长些、那只铅笔短些;如果我们比较两名同学的身高,应该怎么说?(引导学生说出“高矮”)(板书:高矮)(2)(请两位身高相差较大的同学站起来)谁比较高?谁比较矮?(3)(请两位身高相差不大的同学站起来)能不能一眼看出来,谁比较高,谁比较矮?你有什么方法可以比较出他们两个谁比较高?(小组讨论)(4)小组汇报(5)现在我们来玩一个排队的游戏,四人小组按照从高到矮的顺序排队。(6)练习一 7、8、 4、小结:今天我们学了比较长短、比较高矮的方法。其实除了我们今天所说的方法之外,还有很多种方法,我希望同学们多动动脑筋,想出更多更好的方法。教学反思:在学习《长短、高矮》时,通过老师和学生、学生与学生比高矮,利用手边的铅笔、尺等来比长短,使学生理解长短、高矮是相比较而言的。这些事例是学生身边的,学生看的见、有体验、说的出来、易于理解的。因此,学生学起来容易,而且能够正确的加以运用。
教学目的:1、通过贴近学生生活实际的素材,在丰富多彩的实践活动中充分体会时、分、秒的实际意义。2、通过练习,学生比较熟练地进行一些简单的时间计算教学重、难点:时间单位的简单转换和求经过时间的方法。教学过程:第2题,先让学生独立完成,再让学生说一说每一题是怎么比较的,允许学生用不同的方法进行比较,只要说得有道理就行。第3题,读读书上的三个例子,并要求学生收集类似的信息。第4、5题,学生计算经过的时间。如果部分学生有困难,让他们借助钟面模型加以演示、理解,教师给予适当的帮助。第6题,要求学生先估计,再实际进行验证,验证的数据可以由学生和家长一起完成。第7题,事先让学生找几个自己感兴趣的节目,想办法把它们开始和结束的时刻都记录下来。
教学目标:1、经历简单的收集、整理、描述和分析数据的过程。2、使学生初步了解数据的收集和整理过程,学会整理简单的数据,会看简单的统计表和统计图,会根据统计图表中的数据回答一些简单的问题。3、使学生体验解数据的收集、整理、描述和分析的过程,能发现信息并进行简单的数据分析。4、体会到数学知识与实际生活紧密联系,激发学生的学习兴趣,培养学生细心观察的良好学习品质。教学重点:绘制纵向复式条形统计图。教学难点:根据统计图发现问题、提出问题、解决问题。教具准备:课件。教学过程:一、情境导入:你们知道全球有多少人?中国有多少人吗?那你们知道自己所在的区有多少人吗?下面我们一起对收集到的信息进行整理和分析。二、探究新知:1、根据统计表,分别完成两个单式条形统计图2、根据两个条形统计图你能发现哪些信息?如果要在一个统计图中描述这些信息怎么办?在学习复式统计表时是怎么把两个单式统计表合并的?
3、师:不相交的两条直线画长一些会怎样?量一量两条相交直线做组成的角分别是多少度?4、由小组同学在原记录单上动手合作操作,并进行讨论、汇报。5、师生共同总结:不相交的两条直线画长一些仍不相交,这两条直线叫平行线,也可以说它们相互平行;相交的两条直线形成的四个角,如果都是90度,就说这两条直线相互垂直,其中一条叫另外一条的垂线,这两条直线的焦点叫做垂足。6、生齐读P65平行和垂直概念,并画下来。7、今天我们就要一起来认识认识平行与垂直。(揭示课题)三、解释应用,巩固新知1、我们天天都在和垂线与平行线打交道:书本面相邻的两边是互相垂直的,相对的两边是互相平行的。2、P64主题图,找一找,图上有哪些平行和垂直的现象?3、做一做1找一找、想一想还有哪些物体的边是互相垂直的,哪些物体的边是互相平行的?
一、说教材表内除法二单元主要内容有:7.8.9的乘法口诀求商,解决用除法计算的简单的实际问题,综合应用乘,除法计算的稍复杂的实际问题。本单元的目标是着重让学生在熟练掌握用口诀求商一般方法的基础上,综合应用表内乘除法的计算技能解决一些简单和稍复杂的涉及乘,除运算的实际问题。今天所教学的内容是解决问题中的第一个内容,求一个数是另一个数的几倍是多少,这课时的主要目标是:1、联系实际问题理解"一个数是另一个数的几倍"的含义,体会数量之间的相互关系;会用自己的语言表达解决问题的大致过程和结果。2、根据"倍"的概念和除法的含义,分析、推理、探究"求一个数是另一个数的几倍"的实际问题的一般方法;经历将"求一个数是另一个数的几倍是多少"的实际问题转化成"求一个数里面有几个另一个数"的数学问题的过程,初步学会用转化的方法来解决简单的实际问题。
教学目标:知识与技能:1、使学生初步体会对策论方法在解决实际问题中的应用。2使学生认识到解决问题策略的多样性,形成寻找解决问题最优方案的意识。3、培养学生的应用意识和解决实际问题的能力。过程与方法:使学生理解优化的思想,形成从多种方案中寻找最优方案的意识,提高学生解决问题的能力。情感、态度和价值观:使学生感受到数学在日常生活中的广泛应用,尝试用数学的方法解决生活中的简单问题。重点:体会优化的思想难点:寻找解决问题最优方案,提高学生解决问题的能力。教具:图片教学过程:一、情境导入:1、你们听过“田忌赛马“的故事吗?田忌是怎样赢了齐王的?谁能给大家讲一讲这个故事?2、问:田忌的马都不如齐王的马,但他却赢了?这是为什么呢?3、这节课我们就来研究研究。板书课题:数学广角
教材分析:"鸡兔同笼"问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。教材在本单元安排“鸡兔同笼”问题,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。“鸡兔同笼”的原题数据比较大,不利于首次接触该类问题的学生进行探究,因此教材先编排了例1,通过化繁为间的思想,帮助学生先探索出解决该类问题的一般方法后,再解决《孙子算经》中数据比较大的原题。解决“鸡兔同笼”问题时,教材展示了学生逐步解决问题的过程,既猜测、列表、假设或方程解。其中假设和列方程解是解决该类问题的饿一般方法。“假设法”有利于培养学生的逻辑推理能力,列方程则有助于学生体会代数方法的一般性。因此在解决“鸡兔同笼”问题时,学生选用哪种方法均可,不强求用某一种方法。
方法总结:题中未给出图形,作高构造直角三角形时,易漏掉钝角三角形的情况.如在本例题中,易只考虑高AD在△ABC内的情形,忽视高AD在△ABC外的情形.探究点二:利用勾股定理求面积如图,以Rt△ABC的三边长为斜边分别向外作等腰直角三角形.若斜边AB=3,则图中△ABE的面积为________,阴影部分的面积为________.解析:因为AE=BE,所以S△ABE=12AE·BE=12AE2.又因为AE2+BE2=AB2,所以2AE2=AB2,所以S△ABE=14AB2=14×32=94;同理可得S△AHC+S△BCF=14AC2+14BC2.又因为AC2+BC2=AB2,所以阴影部分的面积为14AB2+14AB2=12AB2=12×32=92.故填94、92.方法总结:求解与直角三角形三边有关的图形面积时,要结合图形想办法把图形的面积与直角三角形三边的平方联系起来,再利用勾股定理找到图形面积之间的等量关系.
师:从图1到图2,风车发生了怎样的变化呢?下面请同学们小组合作,共同来解决报告单上提出的问题。(1)从图1到图2,风车绕点O逆时针旋转了___度。(2)你是怎样判断风车旋转的角度的?生小组讨论。3.小组汇报(实物投影展示)(1)图1到图2,风车绕点O逆时针旋转了90°;(2)组1,根据三角形变换的位置判断风车旋转的角度;(3)组2,根据对应的线段判断风车旋转的角度;(4)组3,根据对应的点判断风车旋转的角度。4.小结(教师边做小结边演示)师:通过观察,我们发现风车旋转后,不仅是每个三角形都绕点O逆时针旋转了90°(闪烁),而且,每条线段(闪烁),每个顶点(闪烁),都绕点O逆时针旋转了90°。5.揭示旋转的特征和性质
五、教学评价《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿和记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”这节课的设计着力让学生通过参与有效的实际操作、观察比较来概括出“找次品”的最佳方案。把学生的学习定位在自主建构知识的基础上,建立了“猜想——验证——反思——运用”的教学模式。让学生体验解决问题策略的多样性及运用优化的方法解决问题的有效性。培养学生的自主性学习能力和创造性解决问题的能力。(一)创设情景通过身边生活实例,为学生创设问题情景,让数学问题生活化,一上课就吸引住学生的注意力,调动他们的探究兴趣,为后面的教学做好铺垫,使学生进入最佳的学习状态。让学生充分感受到数学与日常生活的密切联系。
一、复习导入1、口答:最大的一位数是几?最小的两位数是多少?这两个数相差多少?2、数数:10个10个地数,从10数到100; 1个1个地数,从91数到99; 问:99加1是多少?3、导入:你会从100开始接着往后数吗?今天开始我们将要学习更大的数,下面请你们观察这幅图。二、讲授新课1、出示主题图。(1)观察这幅图,说一说画面上正在发生什么事情?(2)看着画面你想知道什么问题?引导学生估算画面上的体育馆大约能坐多少人?2、板书课题:1000以内数的认识。3、教学例1。(1)数一数。每人数出10个小方块,说说你是怎么数的?板书:一个一个地数,10个一是十。
六、教学反思 从这节课的实施情况看,课堂实施与原先的公开课教案是比较一致的,效果也是比较好的,主要体现于以下两点: 1、效果得益于“跳出”--跳出教材框框 刚开始备课和试教时,我打算充沛利用教材,根据教材上的内容出示幻灯片让同学说一说,但一节课下来显得很单调、信息量很少,体现不出生活中数的味道。于是我开放教材,跳出教材的框框,课前安排一个“找生活中的数”实践活动把同学放到社会生活之林中去,让他们先找些“野食”吃。这样,课前在准备过程当中积累的素材多了,同学的学习效益大大提高了。同学在丰富多彩的实际生活中自由自在地采撷自身感兴趣的“果子”,他们采来的“果子”是绚丽多姿的,然后回到课堂交流,共享到了“果子”的丰富,起到“以一当数十”的作用。 这个“跳出”战略,体现了现代科学“系统论”的理论。系统论认为:系统只有开放,不时吸收外界的信息,才干使自身“有序”。
4.已知一个三角形的两边长分别是4cm、7cm,则这个三角形的周长的取值范围是什么?目的:主要是让学生掌握三角形三边的和差关系具体的应用,并能应用生活中实际问题。同学之间可以合作交流互相探讨,发展学生空间观念、推理能力,使学生善于观察生活、乐于探索研究,激发学生学习数学的积极性,从中适当的对学生进行德育教育,教育学生穿越马路时间越长就越危险。(五)课堂小结学生自我谈收获体会,说说学完本节课的困惑。教师做最终总结并指出注意事项。目的:让学生畅所欲言,谈收获体会,教师给予鼓励。主要是让学生熟记新知能应用新知解决问题,培养学生概括总结的能力、有条理的表达能力。注意事项为:判断a,b,c三条线段能否组成一个三角形,应注意:a+b>c,a+c>b,b+c>a三个条件缺一不可。当a是a,b,c三条线段中最长的一条时,只要b+c>a就是任意两条线段的和大于第三边。
回顾整节课的设计,我主要着力于以下三个方面:1.关于教材处理:认真处理教材,目的只有一个——为我的学生尽可能多地提供参与活动的机会,在本节课中主要体现在以下几点:(1)通过“合成代数式”、“赋予分式实际意义”两个活动,激发兴趣,吸引学生参与活动;(2)通过“互举例子”、“填表探究”两个活动,鼓励学生主动参与活动;(3)通过“应用新知”这个环节,促进学生参与活动。2.关于教与学方法的选择:我在设计中始终关注:如何精心组织活动,让学生在丰富的活动中探索、交流与创新,因此我选择了“引导——发现教学法”,具体做法如下: (1)用数、式通性的思想,类比分数,引导学生独立思考、小组协作,完成对分式概念及意义的自主建构,突出数学合情推理能力的养成;(2)加强应用性,通过“应用新知”、“深化拓展”两个环节,密切分式与现实生活及其他学科的联系,发展数学应用意识,突出分式的模型思想。