(4)“不论m取何实数,方程x2+2x-m=0都有实数根”是全称量词命题,其否定为“存在实数m0,使得方程x2+2x-m0=0没有实数根”,它是真命题.解题技巧:(含有一个量词的命题的否定方法)(1)一般地,写含有一个量词的命题的否定,首先要明确这个命题是全称量词命题还是存在量词命题,并找到其量词的位置及相应结论,然后把命题中的全称量词改成存在量词,存在量词改成全称量词,同时否定结论.(2)对于省略量词的命题,应先挖掘命题中隐含的量词,改写成含量词的完整形式,再依据规则来写出命题的否定.跟踪训练三3.写出下列命题的否定,并判断其真假:(1)p:?x∈R,x2-x+ ≥0;(2)q:所有的正方形都是矩形;(3)r:?x∈R,x2+3x+7≤0;(4)s:至少有一个实数x,使x3+1=0.【答案】见解析【解析】(1) p:?x∈R,x2-x+1/4<0.∵?x∈R,x2-x+1/4=(x"-" 1/2)^2≥0恒成立,∴ p是假命题.
1.直观图:表示空间几何图形的平面图形,叫做空间图形的直观图直观图往往与立体图形的真实形状不完全相同,直观图通常是在平行投影下得到的平面图形2.给出直观图的画法斜二侧画法观察:矩形窗户在阳光照射下留在地面上的影子是什么形状?眺望远处成块的农田,矩形的农田在我们眼里又是什么形状呢?3. 给出斜二测具体步骤(1)在已知图形中取互相垂直的X轴Y轴,两轴相交于O,画直观图时,把他们画成对应的X'轴与Y'轴,两轴交于O'。且使∠X'O'Y'=45°(或135°)。他们确定的平面表示水平面。(2)已知图形中平行于X轴或y轴的线段,在直观图中分别画成平行于X'轴或y'轴的线段。(3)已知图形中平行于X轴的线段,在直观图中保持原长度不变,平行于Y轴的线段,在直观图中长度为原来一半。4.对斜二测方法进行举例:对于平面多边形,我们常用斜二测画法画出他们的直观图。如图 A'B'C'D'就是利用斜二测画出的水平放置的正方形ABCD的直观图。其中横向线段A'B'=AB,C'D'=CD;纵向线段A'D'=1/2AD,B'C'=1/2BC;∠D'A'B'=45°,这与我们的直观观察是一致的。5.例一:用斜二测画法画水平放置的六边形的直观图(1)在六边形ABCDEF中,取AD所在直线为X轴,对称轴MN所在直线为Y轴,两轴交于O',使∠X'oy'=45°(2)以o'为中心,在X'上取A'D'=AD,在y'轴上取M'N'=½MN。以点N为中心,画B'C'平行于X'轴,并且等于BC;再以M'为中心,画E'F'平行于X‘轴并且等于EF。 (3)连接A'B',C'D',E'F',F'A',并擦去辅助线x轴y轴,便获得正六边形ABCDEF水平放置的直观图A'B'C'D'E'F' 6. 平面图形的斜二测画法(1)建两个坐标系,注意斜坐标系夹角为45°或135°;(2)与坐标轴平行或重合的线段保持平行或重合;(3)水平线段等长,竖直线段减半;(4)整理.简言之:“横不变,竖减半,平行、重合不改变。”
1.观察(1)如图,在阳光下观察直立于地面的旗杆AB及它在地面影子BC,旗杆所在直线与影子所在直线的位置关系是什么?(2)随着时间的变化,影子BC的位置在不断的变化,旗杆所在直线AB与其影子B’C’所在直线是否保持垂直?经观察我们知道AB与BC永远垂直,也就是AB垂直于地面上所有过点B的直线。而不过点B的直线在地面内总是能找到过点B的直线与之平行。因此AB与地面上所有直线均垂直。一般地,如果一条直线与一个平面α内所有直线均垂直,我们就说l垂直α,记作l⊥α。2.定义:①文字叙述:如果直线l与平面α内的所有 直线都垂直,就说直线l与平面α互相垂直,记作l⊥α.直线l叫做平面α的垂线,平面α叫做直线l的垂面.直线与平面垂直时,它们唯一的公共点P叫做交点.②图形语言:如图.画直线l与平面α垂直时,通常把直线画成与表示平面的平行四边形的一边垂直.③符号语言:任意a?α,都有l⊥a?l⊥α.
6.例二:如图在正方体ABCD-A’B’C’D’中,O’为底面A’B’C’D’的中心,求证:AO’⊥BD 证明:如图,连接B’D’,∵ABCD-A’B’C’D’是正方体∴BB’//DD’,BB’=DD’∴四边形BB’DD’是平行四边形∴B’D’//BD∴直线AO’与B’D’所成角即为直线AO’与BD所成角连接AB’,AD’易证AB’=AD’又O’为底面A’B’C’D’的中心∴O’为B’D’的中点∴AO’⊥B’D’,AO’⊥BD7.例三如图所示,四面体A-BCD中,E,F分别是AB,CD的中点.若BD,AC所成的角为60°,且BD=AC=2.求EF的长度.解:取BC中点O,连接OE,OF,如图。∵E,F分别是AB,CD的中点,∴OE//AC且OE=1/2AC,OF//AC且OF=1/2BD,∴OE与OF所成的锐角就是AC与BD所成的角∵BD,AC所成角为60°,∴∠EOF=60°或120°∵BD=AC=2,∴OE=OF=1当∠EOF=60°时,EF=OE=OF=1,当∠EOF=120°时,取EF的中点M,连接OM,则OM⊥EF,且∠EOM=60°∴EM= ,∴EF=2EM=
本节课选自《普通高中课程标准实验教科书数学必修1》5.6.2节 函数y=Asin(ωx+φ)的图象通过图象变换,揭示参数φ、ω、A变化时对函数图象的形状和位置的影响。通过引导学生对函数y=sinx到y=Asin(ωx+φ)的图象变换规律的探索,让学生体会到由简单到复杂、由特殊到一般的化归思想;并通过对周期变换、相位变换先后顺序调整后,将影响图象变换这一难点的突破,让学生学会抓住问题的主要矛盾来解决问题的基本思想方法;通过对参数φ、ω、A的分类讨论,让学生深刻认识图象变换与函数解析式变换的内在联系。通过图象变换和“五点”作图法,正确找出函数y=sinx到y=Asin(ωx+φ)的图象变换规律,这也是本节课的重点所在。提高学生的推理能力。让学生感受数形结合及转化的思想方法。发展学生数学直观、数学抽象、逻辑推理、数学建模的核心素养。
1.探究:根据基本事实的推论2,3,过两条平行直线或两条相交直线,有且只有一个平面,由此可以想到,如果一个平面内有两条相交或平行直线都与另一个平面平行,是否就能使这两个平面平行?如图(1),a和b分别是矩形硬纸板的两条对边所在直线,它们都和桌面平行,那么硬纸板和桌面平行吗?如图(2),c和d分别是三角尺相邻两边所在直线,它们都和桌面平行,那么三角尺与桌面平行吗?2.如果一个平面内有两条平行直线与另一个平面平行,这两个平面不一定平行。我们借助长方体模型来说明。如图,在平面A’ADD’内画一条与AA’平行的直线EF,显然AA’与EF都平行于平面DD’CC’,但这两条平行直线所在平面AA’DD’与平面DD’CC’相交。3.如果一个平面内有两条相交直线与另一个平面平行,这两个平面是平行的,如图,平面ABCD内两条相交直线A’C’,B’D’平行。
1.观察(1)如图,在阳光下观察直立于地面的旗杆AB及它在地面影子BC,旗杆所在直线与影子所在直线的位置关系是什么?(2)随着时间的变化,影子BC的位置在不断的变化,旗杆所在直线AB与其影子B’C’所在直线是否保持垂直?经观察我们知道AB与BC永远垂直,也就是AB垂直于地面上所有过点B的直线。而不过点B的直线在地面内总是能找到过点B的直线与之平行。因此AB与地面上所有直线均垂直。一般地,如果一条直线与一个平面α内所有直线均垂直,我们就说l垂直α,记作l⊥α。2.定义:①文字叙述:如果直线l与平面α内的所有 直线都垂直,就说直线l与平面α互相垂直,记作l⊥α.直线l叫做平面α的垂线,平面α叫做直线l的垂面.直线与平面垂直时,它们唯一的公共点P叫做交点.②图形语言:如图.画直线l与平面α垂直时,通常把直线画成与表示平面的平行四边形的一边垂直.
教师活动:(1)组织学生回答相关结论,小组之间互相补充评价完善。教师进一步概括总结。(2)对学生的结论予以肯定并表扬优秀的小组,对不理想的小组予以鼓励。(3)多媒体投放板书二:超重现象:物体对支持物的压力(或对悬挂物的拉力)大于物体所受到的重力的情况称为超重现象。实质:加速度方向向上。失重现象:物体对支持物的压力(或对悬挂物的拉力)小于物体所受到的重力的情况称为失重现象。实质:加速度方向向下。(4)运用多媒体展示电梯中的现象,引导学生在感性认识的基础上进一步领会基本概念。4.实例应用,结论拓展:教师活动:展示太空舱中宇航员的真实生活,引导学生应用本节所学知识予以解答。学生活动:小组讨论后形成共识。教师活动:(1)引导学生分小组回答相关问题,小组间互相完善补充,教师加以规范。(2)指定学生完成导学案中“思考与讨论二”的两个问题。
(二)初读课文,整体感知首先教师对作者进行简单介绍,再要求学生速读课文,让学生初步感知课文内容,归纳全文思路,边读边思考PPT上的问题。问题:全文可以分成几部分?此环节意在激发学生的学习主动性,培养学生的自学能力。读毕,我会对学生的自学情况进行检查反馈,鼓励学生踊跃发言,说出自己理解的写作思路,最后教师对学生的答案进行概括和总结,此环节能够让学生对中国建筑的特征整体把握,夯实学习本文的基础,同时感知课文,理清文章脉络,实现长文短教,为析读本文作好铺垫。(三)析读课文,质疑问难此环节是教学的重要阶段,在这里,我会以新课标为基准,做到阅读指向每一个学生的个体阅读,同时在教学过程中遵循启发性,循序渐进性的原则。此环节运用小组合作学习法、讨论法和问答法分析中国建筑的特征。同学每四人为一小组讨论PPT上展示的问题。
8、板书装在套子里的人别里科夫的形象——有形的套子套己——无形的套子套人第二课时合作探究:目标挖掘主题及现实意义。问题设置,衔接上节课内容,层层深入。1、结合上节课别里科夫的形象分析:他的思想被什么套住,其悲剧原因在哪?(根据人物形象的分析与社会背景的了解,直击主题。)沙皇腐朽的专制统治套住了他的思想,沙皇的清规戒律使他不敢越雷池一步,所以他是受害者,但他的身份性格以及特定的社会环境,又让他成为沙皇统治的捍卫者。2、他恋爱的情节以及科瓦连科这两个人物的塑造的意义?(从人物以及主题入手,推翻沙皇的腐朽反动的统治,必须是每一个人都敢于打破套子,唤醒革新,更新观念,拒绝腐朽。)别里科夫渴望打破束缚,也想革新,而科瓦连科两个人物体现朝气活泼,以及勇于打破常规束缚的勇气,为革新升起了一片曙光。3、塑造别里科夫的手法,除了一般刻画人物方法外,还有什么方法?
一是电子商务企业布局“散”。电商企业分布比较散,无一家规模电商企业,且电商之间缺乏交流沟通,如同一盘散沙,缺少连接纽带,各自为战,合作意识不强,信息无法共享,不能形成合力高效发展,虽然主要分布在**大道沿线,但是没有聚集发展,没有形成规模。二是电子商务企业规模“小”。电商企业普遍规模较小,呈现出以小微门店为主,大部分电商还是保持着个人或夫妻等家庭模式,很多电商自己既是老板又是客服,规模小,销售额不大,龙头企业几乎没有,业务量也普遍较少。西部山区和川原部分镇街,虽然有一些以经营**土特产为主的企业开始涉足电商,尚没有形成一定规模;和平路西堡新村段,自发形成小微物流企业一条街,基本属于前店后库的模式,难以发挥龙头带动作用。
二、今后工作打算一是探索农村产权规范流转和交易。依托农村集体经济组织建立符合农村实际需要的产权流转交易市场,开展成员股权、农村承包土地经营权、集体林权、“四荒”地使用权、农业类知识产权、农村集体经营性资产出租、抵押等流转交易。根据农村产权要素性质、流转范围和交易需要,制定产权流转交易管理办法,健全市场交易规则,完善运行机制,实行公开交易,加强农村产权流转交易服务和监督管理。二是吸收更多的农民股权。探索支持引导村民依法自愿将自己的房屋入股到村股份经济合作社统一运营,群众享受分红。目前,群众的房屋出租,主要是个人与个人之间的协议关系,会对承租人的服务及管理造成缺位。入股到村股份经济合作社,可实现统一运营,年底按股权领取分红,创造更大的效益,提供更好的服务。同时,也便于村上管理,增强其抵御自然风险的能力。
本节课选自《普通高中课程标准实验教科书数学必修1本(A版)》第五章的5.5.1 两角和与差的正弦、余弦和正切公式。本节的主要内容是由两角差的余弦公式的推导,运用诱导公式、同角三角函数的基本关系和代数变形,得到其它的和差角公式。让学生感受数形结合及转化的思想方法。发展学生数学直观、数学抽象、逻辑推理、数学建模的核心素养。课程目标 学科素养1.了解两角差的余弦公式的推导过程.2.掌握由两角差的余弦公式推导出两角和的余弦公式及两角和与差的正弦、正切公式.3.熟悉两角和与差的正弦、余弦、正切公式的灵活运用,了解公式的正用、逆用以及角的变换的常用方法.4.通过正切函数图像与性质的探究,培养学生数形结合和类比的思想方法。 a.数学抽象:公式的推导;b.逻辑推理:公式之间的联系;c.数学运算:运用和差角角公式求值;d.直观想象:两角差的余弦公式的推导;e.数学建模:公式的灵活运用;
本节内容是三角恒等变形的基础,是正弦线、余弦线和诱导公式等知识的延伸,同时,它又是两角和、差、倍、半角等公式的“源头”。两角和与差的正弦、余弦、正切是本章的重要内容,对于三角变换、三角恒等式的证明和三角函数式的化简、求值等三角问题的解决有着重要的支撑作用。 课程目标1、能够推导出两角和与差的正弦、余弦、正切公式并能应用; 2、掌握二倍角公式及变形公式,能灵活运用二倍角公式解决有关的化简、求值、证明问题.数学学科素养1.数学抽象:两角和与差的正弦、余弦和正切公式; 2.逻辑推理: 运用公式解决基本三角函数式的化简、证明等问题;3.数学运算:运用公式解决基本三角函数式求值问题.4.数学建模:学生体会到一般与特殊,换元等数学思想在三角恒等变换中的作用。.
新知讲授(一)——随机试验 我们把对随机现象的实现和对它的观察称为随机试验,简称试验,常用字母E表示。我们通常研究以下特点的随机试验:(1)试验可以在相同条件下重复进行;(2)试验的所有可能结果是明确可知的,并且不止一个;(3)每次试验总是恰好出现这些可能结果中的一个,但事先不确定出现哪个结果。新知讲授(二)——样本空间思考一:体育彩票摇奖时,将10个质地和大小完全相同、分别标号0,1,2,...,9的球放入摇奖器中,经过充分搅拌后摇出一个球,观察这个球的号码。这个随机试验共有多少个可能结果?如何表示这些结果?根据球的号码,共有10种可能结果。如果用m表示“摇出的球的号码为m”这一结果,那么所有可能结果可用集合表示{0,1,2,3,4,5,6,7,8,9}.我们把随机试验E的每个可能的基本结果称为样本点,全体样本点的集合称为试验E的样本空间。
发展壮大村集体经济是统筹城乡发展、建设新农村的重要支撑。推进新农村建设,村集体经济是重要基础。实践证明,村集体经济发展比较好的地方,新农村建设步伐就快,农村面貌变化就大,群众得到的实惠就多。只有不断发展壮大村集体经济,才能进一步增强村级组织服务功能。
(三)结构不断优化。产业结构由以往的工业、农业主导向服务业主导转变。三次产业结构由2012年的X﹕X﹕X调整为目前的X﹕X﹕X。工业结构深入调整。特别是矿业占规模工业增加值的比重由原来的X%左右降至目前的X%左右,下降X个百分点;园区工业产值占全市工业总产值比重为X%;电子信息、新材料、新能源等新兴产业成为新的经济增长点。消费转型升级加快。吃穿等基本生活型消费向生活享受型消费转变,汽车类消费比2012年增长了X倍;农村消费占比由2012年X%提至X%。投资结构积极变化
1.项目建设的重视程度不够。部分单位对项目谋划、项目入库、项目建设的重要性认识不够,存在被动应付情绪,对新政策缺乏探查能力,对已有政策缺乏深入研究,项目谋划缺乏前瞻性,不能及时抢抓政策机遇,符合政策的项目没有及早谋划入库,导致招引项目因未提前入库而无法落地,错失了发展的有利时机。项目经办人员变动频繁、业务不精,对项目资金申请工作认识不足,对中央和省预算内项目申报政策缺乏基本了解,在项目申报前期对申报程序不熟悉,申报项目时不了解申报特点与申报范围,项目设计时找不到项目与申报条件的最佳结合点,错失了申报机会。 2.项目审批效率不高。虽然积极响应了国家“放管服”改革,精简了办事流程、压减了办理时限,但项目前期手续繁琐、审批部门多、环节交叉、代办衔接不顺畅,业务审查、专业测量、现场核查等环节不够紧凑等问题任然存在,一些涉及上级审批的事项,如规划调整、土地变性、图纸审查等手续,办理周期仍然较长,严重影响了项目进展。 3.项目前期准备工作不充分。部分项目决策程序不规范,项目安排没有充分考虑用地规划和现实约束性指标,委托编制规划时缺乏预见性,对中、远期发展需求和建设项目用地规划考虑不全面,招引项目落地时,要么不符合规划,无“地”可用,要么不符合投资方意愿,不愿意选,而规划修编程序复杂、耗时长,部分项目业主等不住、拖不起,只能放弃投资。如*新能源汽车销售服务有限公司的新能源汽车充电桩建设项目,总投资*亿元,因现行的城乡规划中没有将新能源汽车充电设施建设纳入规划,致使项目无法投资建设。 4.项目储备不足结构单一。受产业结构调整、实体经济亏损、市场供求关系等影响,社会资本对工业企业的投资意愿下降,加之土地、税收等招商引资优惠政策的清理规范,招商引资的吸引力不断下降,全区现有重大产业项目、高新技术项目、工业项目、生态项目、文旅项目数量少、规模小,总体投资增幅不大,尤其缺少投资超*亿元的重特大项目,工业固投整体缺乏后续重大项目支撑,工业发展后劲不足,文旅项目缺乏特色和亮点,无法吸引和留住游客,项目对产业链和我区经济发展的带动作用偏弱。 5.服务工作有所欠缺。受当前体制机制影响,部门服务规范有余,灵活不够,工作人员业务水平不高,对项目申报人员所咨询的问题有时不能准确回答和一次性告知,造成服务对象多次往返。一些基层的项目帮办人员主体作用发挥不够,缺乏想企业所想,急企业所急的主动服务意识。
坚持示范引领,推进数字经济融合发展。立足“一立四振兴”发展战略,全力做好数字经济招商引资,理顺大数据、智慧城市建设机构运行机制,大力推广中国绿色食药网和华夏天麻网、华夏杜仲网、华夏乌鸡网,加快数字经济产业园、大数据共享平台建设、徐家坪数字乡村等示范项目建设,以点带面推动数字经济突破发展。明确2024年数字乡村建设任务32项,建设数字乡村示范镇5个,建设数字乡村示范村12个。拓展文明实践,筑牢公民思想道德根基。成立R县志愿者联合会,举行R县2024年学雷锋志愿服务活动启动仪式,开展学雷锋志愿服务活动约200余场次。推荐参评并荣获陕西省最美志愿者1人,汉中市最美志愿者3人,汉中市最佳志愿服务组织2个、最佳志愿服务项目2个和最美志愿服务社区1个。
三、下一步工作举措一是抓招商,提升项目建设质效:建立健全新的招商引资工作机制,开展重大项目招商和重大产业项目建设攻坚行动,推行“五个一”项目推进机制,管委会一周一调度,一月一讲评。二是抓服务,提升营商环境品位:首先提升干部职工的服务水平;其次强化要素保障,抓好闲置土地和僵尸企业清理,储备土地300亩、建标准化厂房x万平方米,盘活资产提高土地利用率;再次,完成机构改革和赋权改革,实现园区事园区办。三是抓创新,提升产业发展水平:围绕电子陶瓷产业园等专业园区发展建设和产业承载情况,培育一批科技创新项目;扶持企业科技创新,提高产品科技含量和附加值。四是抓转型,提升园区发展动力:围绕打造园区孵化、科技创新、金融服务、人才培养、共建共享等x大平台发力;进一步完善路网等基础设施;开启梅苑工业园产城融合建设;严守安全生产和环境保护两条底线。