低年级学生注意力不易持久。单调的练习学生容易产生厌倦情绪,降低练习效率。况且对于笔算两位数加减两位数,学生们掌握得都很熟练了。针对这些,我把整堂课的设计注重以下几点:1、设计生活化的教学内容。《标准》指出:“人人学有价值的数学。”“有价值”的数学应该与学生的现实生活和以往的知识体验有密切的关系,是对他们有吸引力、能使他们产生兴趣的内容。这节课我的教学内容是笔算。开始时我并没有直接出示两位数加减两位数的笔算练习,从旧知到新知。而是试图从日常生活入手,创设一个帮助老师选择买东西的情境,希望通过帮助老师从2种价格不同的电风扇和从2种价格不同的洗衣机中各选择一样,计算价格,力图从真实的生活环境中解决问题,放开手让他们去学。况且用学生熟悉的,有兴趣的,贴近他们现实生活的内容进行教学,才能唤起他们的学习兴趣,调动学习积极性,使学生感受到生活与数学知识是密不可分的,使数学课富有浓郁的生活气息,从而产生学习和探求数学的动机,主动应用数学去思考问题、解决问题。
一、创设情境,导入新课教师边放课件边讲故事):今天老师给你们讲一个“猴妈妈分桃”的故事。有一天,一群小猴到山下去玩,走着走着,看到一棵桃树上结满了又大又红的桃,就摘了很多。回家后,猴妈妈看到小猴们拿了这么多桃回来,可高兴了,说:“妈妈分桃给你们吃。”二、合作交流,探索新知1、动手操作,探究方法(1)提出问题。师:小猴摘了多少个桃?准备每只小猴分3个,可分给几只猴子?(板书:12个桃,每只小猴分3个,可以分给几只小猴?)(2)学生列式:12÷3=(3)分一分学生小组合作,动手分一分。(可以用其他的物体代替)(4)说一说分的过程可能有以下几种:第一种:先分给第一只小猴3个桃,再分给第二只小猴3个桃,然后给第3只小猴3个桃,最后3个桃正好分给第四只小猴。……12个桃可分4只猴子。
(二)解决问题,总结方法《新课程标准》主张充分挖掘数学教材潜在的“再创造空间”,让学生亲自经历将实际问题抽象成数学模型并进行解释与应用的过程,让学生最大限度地参与数学知识的发现、提出、形成、应用的再创造过程,以促进学生主动的发展。因此我创设了福娃晶晶为迎接奥运会做准备的数学情景,设计了四组有关7、8、9的用除法算式解决的数学问题。1、出示晶晶的问题:(1)做了56面彩旗,平均每行挂7面,能挂多少行?(2)做了56面彩旗,要挂成8行,平均每行挂多少面?(3)做了49颗五角星,平均分给7个小朋友,每人多少颗五角星?(4)准备了27个气球,平均9个摆一行,能摆多少行?2、解决晶晶的问题:让学生根据"友情提示"的要求完成自学内容后再小组交流、全班交流。在交流过程中引导学生观察:56÷8=7和56÷7=8这两个算式,从而发现一句乘法口诀可以计算两个除法算式。
(让学生观察比较,使他们对估算的作用有了进一步的理解,在说优缺点时让他们比比谁说得更有说服力,使学生在思考时更有动力,调动了他们主动学习的兴趣)小结:估算时只要误差在容许的范围内,估算的方法简便、快速都可以应用。(三)、运用知识解决问题1、做教科书第71页“做一做”中的习题。让不同方法的学生讲一讲自己的思考过程和所用方法的特点。2、解决实际问题。师:“我们年段有362个学生,这星期5个老师要带你们去奶牛场参观,学校租了9辆车,请大家估计一下每辆车上坐多少人?”(让学生用所学的知识解决实际生活问题,激发了学生浓厚的兴趣,让他们主动投入到学习中,并获得成功的体验)五、总结评价让学生说说自己的收获和评价一下这节课自己的或同学的表现。
新课程理念下的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。学生要有充分的从事数学活动的时间和空间,并有机会分享自己和他人的想法与成果。为此,教学时我注意让每一个学生都积极参与数学学习活动,关注学生个性差异,加强师生和生生之间的多向交流,培养学生的合作精神。既注重学生的独立思考,又注重学生的合作学习。努力做到:学生自己能做的,教师不做;学生自己能说的,教师不说;学生自己能探索出的结论,教师不教。设计本节课时,我主要考虑到以下三点:1、创设情境,感受验算的作用。2、提供足够的探究空间。3、利用情境充分理解除法算式各部分之间的关系。本课的教学重点是让学生会用乘法对除法进行验算,体验乘法验算的优越性。教学中我紧紧抓住教学重点来突破教学难点。教学环节过度自然,知识层层递进。在课件的辅助下,以形象的画面调动了学生探究问题的欲望,在解决问题中引导、启发学生总结出了验算的方法。
师:希望大家开动脑筋,大胆猜想,看谁能根据自己已有的生活经验和知识经验,发现小数加减法计算的方法,并说明其中的道理。出示图片。师:从图中了解到什么信息?(学生自由介绍)师:这些小数都认识吗?谁来谈谈对这些小数的认识。提问:小数点后面的“5”表示什么?小数点前面的2表示什么意思?3.师:根据这些信息你能提出哪些数学问题?根据学生回答教师板书解决问题的算式。选择一个问题研究。(三)探究算理1.尝试计算并说明理由。(选择12.5+3.6=板书)学生先尝试用自己的方法解决,把不同的方法板演在黑板上。2.学生反馈、组织评价。先让生自己说计算过程和想法,并给予点评,再重点讲解笔算的方法和算理。3.探究小数的减法。师:根据小数加法的经验,减法能独立解决吗?学生独立解决问题。反馈时展示学生不同的计算方法。评价时注重引导学生说说是怎样想的,引导学生说清算理。强调整数部分“0”的处理。
一、说教材:《简便计算》 这一课是人民教育出版社第八册数学第三单元P44的内容。是在学生已经掌握了乘法的意义并且对乘法交换律、结合律、分配律以及除法的定律有了初步认识的基础上进行教学的。本节课力求突出以学生发展为本的教育思想,所以整个教学过程要求以学生自主学习、自主探索为主,通过学生的观察、归纳、运用等数学学习形式,让学生去感受数学问题的探索性和挑战性。学生在认知的过程中熟练地应用乘法结合律和连除的简便计算等一些定律并把前面一节课所学知识与今天的内容联系起来,从而更好地进行简便计算,达到灵活运用的目的与效果。二、说教法:根据本节课的教材内容和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,采用自学讨论法进行教学。师生作适当归纳或总结性的讲解;最后进行巩固练习。通过这种教法,引导学生充分提出问题并充分讨论问题,充分体现学生的主体性,教师只是学生学习的指导者、活动的组织者。
1、教材地位:《加法运算定律的应用》这节内容是在前面学习了加法交换律及加法结合律的基础上进行教学的。它是加法两个运算定律在实际生活的应用,同时也为后面进行简便计算打下一定的基础。教材中改变了改变了以往简便计算以介绍算法技巧为主的倾向,着力引导学生将简便计算应用于解决现实生活中的实际问题,让学生借助于解决实际问题,进一步体会和认识运算定律。同时注意解决问题策略的多样化。这对发展学生思维的灵活性,提高学生分析问题、解决问题的能力,都有一定的促进作用。它是在例2已经计算了李叔叔前3天所行路程和的基础上,给出李叔叔后四天的行程计划,让学生求4天计划行程的和。教材中设计的四个加数,其中两个可以凑成整百数,另两个可以凑成整十数,旨在让学生将前面所学的两条加法运算定律,综合运用到解决实际问题的计算中。
一、说教材:本节课是在理解和掌握了五条运算定律的基础上进一步学习整数运算中的一些简便计算。这部分内容主要安排了五道例题。我主要教学的是例1和例2,讨论加减法运算中常用的简便计算。例1主要着眼于通过不同解法的比较,使学生认识一个数连续减去两个数可以改为减去这两个数的和。例2主要是加减计算的灵活应用,通过典型的、紧密联系生活,引导学生根据运算特点和数据特点,灵活选用合理简便的计算方法。本节教材最大的特点是:将简便计算的讨论与实际问题的解决有机地结合起来,使问题解决策略的多样化与计算方法的多样化融为一体。根据这一特点,我制定本节课的教学目标有以下几点:1、让学生在解决问题中理解连减的简便计算方法,体验计算方法的多样化。2、使学生感受数学与现实生活中的联系,培养学生根据具体情况选择算法的意识与能力,发展思维性。
一、揭题:小朋友们,今天我们一起来做练习。二、练习:1、第8题:这是一道计算题。(1)明确要求:看谁算得又对又快。(2)学生独立完成。(3)订正答案。(4)有错的学生,说一说计算顺序是怎样的,每一步的计算结果是多少?2、第9题:这是一道用数学的题。(1)看图,同位两个互相说说图意,并提出数学问题。(2)根据问题列算式解答。(3)订正答案。3、第10题:比一比。(1)明确要求,看谁先夺得红旗。(2)各小组派代表参加比赛。(3)对算得又对又快的学生提出表扬,并奖励给一个小标志。(4)再加入几组比赛题,尽量让学生多参与。4、第11题:这是一道用数学的题。(1)看图,说图意,提出数学问题。(2)列算式解答,指名板演订正。(3)说一说为什么用加法计算?5、思考题:小组讨论完成。一共12人,每两人之间插入一个女生,一共能插入11人。
学生思考回答后归纳:随着征服地区的扩大,出现了许多新问题,新矛盾,原有的公民法已经无法适应这些新变化(质疑)。公民法适用范围限于罗马公民,用来调整他们之间的关系,罗马公民受到法律保护,并享受法律赋予的权利。在扩张中纳入到疆域中的许多外邦人不能受到法律的保护,在这种背景下,公民法发展成万民法。万民法的出现,一方面由于公民法的狭隘性,另一方面伴随对外战争的胜利,奴隶制在罗马得到快速发展。为了更加有效地保护奴隶主的私人利益,迫切需要建立和完善法律制度来维护统治阶级的利益不受侵犯。问题探究:万民法的制定产生哪些作用?学生思考回答后总结:万民法取代公民法,协调了罗马人和外邦人之间的关系及外邦人相互之间的关系,对于在庞大帝国内微细,协调各地区的民族关系、社会矛盾也祈祷重要作用。万民法使法律具有了更大的适用范围,也成为巩固罗马统治的重要工具。
(设计意图:根据学生喜爱听故事的特点,结合教材内 容,选用了一个真实感人的故事,震撼着学生的心灵,让学生充分感受到了父母爱的力量,爱的伟大。同时通过制作感恩卡这种充满浓浓的亲情的活动的开展,进一步激发了学生 爱的情感,使学生感激、回报家人的爱由心而发。)3、总结延伸:这周末回家立刻行动起,以写日记的形式每天记录下你为家人做的事,当个贴心的小宝贝吧。(设计意图: 品德课要坚持知、 情、意、行统一的原则, 我们应当将学生的生活经验和感知作为教学的出发点,做到活用教材,努力建立起课程、教学法与学生生活之间的通道。并注意有效地利用课程资,补充一些现实生活中“活”的教材,使教学内容更贴近学生的生活。为防止课内激情课外抛 的现象,特别设计了课外活动延伸这个环节。)
【课标要求和解读】1.课标内容:举例说明旅游景观的观赏方法。活动建议——结合自己的旅游经历,交流欣赏旅游景观的体验。2.课标解读:要正确欣赏旅游资源,首先要以了解旅游资源的不同类型和景观特点为前提,并且对中外著名旅游景点有必要的了解;不同旅游景观形成原因不同,所以欣赏方法不同;了解欣赏旅游景观的主要方法——了解景观特点、选择合适的观察位置、把握有利的观察时机、洞悉景观的文化定位和历史内涵、激发健康的审美情趣。【教学目标和要求】1. 知识目标:明确旅游景观的描述和欣赏是多角度的,掌握不同景观的一般欣赏方法——了解景观特点、精选点位、把握时机、洞悉文化定位。2. 能力目标:初步学会不同的地文景观、气象景观、水域景观的正确的欣赏方法。3. 德育目标:培养审美情趣,提高审美素质;激发学生探索神奇大自然的兴趣;巩固学生热爱自然和祖国大好河山的感情。
本节课选自《普通高中课程标准数学教科书-必修一》(人教A版)第三章《函数的概念与性质》,本节课是第2课时,本节课主要学习函数的三种表示方法及其简单应用,进一步加深对函数概念的理解。课本从引进函数概念开始就比较注重函数的不同表示方法:解析法,图象法,列表法.函数的不同表示方法能丰富对函数的认识,帮助理解抽象的函数概念.特别是在信息技术环境下,可以使函数在形与数两方面的结合得到更充分的表现,使学生通过函数的学习更好地体会数形结合这种重要的数学思想方法.因此,在研究函数时,要充分发挥图象的直观作用.课程目标 学科素养A.在实际情景中,会根据不同的需要选择恰当的方法(解析式法、图象法、列表法)表示函数;B.了解简单的分段函数,并能简单地应用;1.数学抽象:函数解析法及能由条件求函数的解析式;2.逻辑推理:求函数的解析式;
课本从引进函数概念开始就比较注重函数的不同表示方法:解析法,图象法,列表法.函数的不同表示方法能丰富对函数的认识,帮助理解抽象的函数概念.特别是在信息技术环境下,可以使函数在形与数两方面的结合得到更充分的表现,使学生通过函数的学习更好地体会数形结合这种重要的数学思想方法.因此,在研究函数时,要充分发挥图象的直观作用.在研究图象时,又要注意代数刻画以求思考和表述的精确性.课本将映射作为函数的一种推广,这与传统的处理方式有了逻辑顺序上的变化.这样处理,主要是想较好地衔接初中的学习,让学生将更多的精力集中理解函数的概念,同时,也体现了从特殊到一般的思维过程.课程目标1、明确函数的三种表示方法;2、在实际情境中,会根据不同的需要选择恰当的方法表示函数;3、通过具体实例,了解简单的分段函数,并能简单应用.
本节通过学习用二分法求方程近似解的的方法,使学生体会函数与方程之间的关系,通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用,进一步认识到函数是描述客观世界变化规律的基本数学模型,能初步运用函数思想解决一些生活中的简单问题。课程目标1.了解二分法的原理及其适用条件.2.掌握二分法的实施步骤.3.通过用二分法求方程的近似解,使学生体会函数零点与方程根之间的联系,初步形成用函数观点处理问题的意识.数学学科素养1.数学抽象:二分法的概念;2.逻辑推理:用二分法求函数零点近似值的步骤;3.数学运算:求函数零点近似值;4.数学建模:通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用.
《数学1必修本(A版)》的第五章4.5.2用二分法求方程的近似解.本节课要求学生根据具体的函数图象能够借助计算机或信息技术工具计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法,从中体会函数与方程之间的联系;它既是本册书中的重点内容,又是对函数知识的拓展,既体现了函数在解方程中的重要应用,同时又为高中数学中函数与方程思想、数形结合思想、二分法的算法思想打下了基础,因此决定了它的重要地位.发展学生数学直观、数学抽象、逻辑推理和数学建模的核心素养。课程目标 学科素养1.通过具体实例理解二分法的概念及其使用条件.2.了解二分法是求方程近似解的常用方法,能借助计算器用二分法求方程的近似解.3.会用二分法求一个函数在给定区间内的零点,从而求得方程的近似解. a.数学抽象:二分法的概念;b.逻辑推理:运用二分法求近似解的原理;
新知探究:向量的减法运算定义问题四:你能根据实数的减法运算定义向量的减法运算吗?由两个向量和的定义已知 即任意向量与其相反向量的和是零向量。求两个向量差的运算叫做向量的减法。我们看到,向量的减法可以转化为向量的加法来进行:减去一个向量相当于加上这个向量的相反向量。即新知探究(二):向量减法的作图方法知识探究(三):向量减法的几何意义问题六:根据问题五,思考一下向量减法的几何意义是什么?问题七:非零共线向量怎样做减法运算? 问题八:非零共线向量怎样做减法运算?1.共线同向2.共线反向小试牛刀判一判(正确的打“√”,错误的打“×”)(1)两个向量的差仍是一个向量。 (√ )(2)向量的减法实质上是向量的加法的逆运算. ( √ )(3)向量a与向量b的差与向量b与向量a的差互为相反向量。 ( √ )(4)相反向量是共线向量。 ( √ )
求函数的导数的策略(1)先区分函数的运算特点,即函数的和、差、积、商,再根据导数的运算法则求导数;(2)对于三个以上函数的积、商的导数,依次转化为“两个”函数的积、商的导数计算.跟踪训练1 求下列函数的导数:(1)y=x2+log3x; (2)y=x3·ex; (3)y=cos xx.[解] (1)y′=(x2+log3x)′=(x2)′+(log3x)′=2x+1xln 3.(2)y′=(x3·ex)′=(x3)′·ex+x3·(ex)′=3x2·ex+x3·ex=ex(x3+3x2).(3)y′=cos xx′=?cos x?′·x-cos x·?x?′x2=-x·sin x-cos xx2=-xsin x+cos xx2.跟踪训练2 求下列函数的导数(1)y=tan x; (2)y=2sin x2cos x2解析:(1)y=tan x=sin xcos x,故y′=?sin x?′cos x-?cos x?′sin x?cos x?2=cos2x+sin2xcos2x=1cos2x.(2)y=2sin x2cos x2=sin x,故y′=cos x.例5 日常生活中的饮用水通常是经过净化的,随着水的纯净度的提高,所需进化费用不断增加,已知将1t水进化到纯净度为x%所需费用(单位:元),为c(x)=5284/(100-x) (80<x<100)求进化到下列纯净度时,所需进化费用的瞬时变化率:(1) 90% ;(2) 98%解:净化费用的瞬时变化率就是净化费用函数的导数;c^' (x)=〖(5284/(100-x))〗^'=(5284^’×(100-x)-"5284 " 〖(100-x)〗^’)/〖(100-x)〗^2 =(0×(100-x)-"5284 " ×(-1))/〖(100-x)〗^2 ="5284 " /〖(100-x)〗^2
练习3、先化简,再求值:2a(a-b)-b(2a-b)+2ab,其中a=2,b=-3.(通过例题和联系将所学知识升华,提升)练习4、动动脑。(让学生进一步感知生活中处处有数学)(四)、畅谈收获、拓展升华1、本节课你学到了什么?依据是什么?整式的乘法存在什么没有解决的问题?(同桌互讲,师生共同小结)2、布置作业:习题1.9知识技能1四、说课小结本堂课我主要采用引导探索法教学,倡导学生自主学习、尝试学习、探究学习、合作交流学习,鼓励学生用所学的知识解决身边的问题,注重教学效果的有效性。学生在合作学习中,可以活跃课堂气氛,消除心理压力,在愉快的环境中学习知识,有效地拓展学生思维,成功地培养学生的观察能力、思维能力、合作探究能力、交流能力和数学学习能力。但由于本人对新课标和新教材的理解不一定十分到位,所以在教材本身内在规律的把握上,会存在一定的偏差;另外,由于对学生的认知规律认识不够,所以教学活动的设计不一定十分有效。所有这些都有待教学实践的检验。