①政府的宗旨是全心全意为人民服务②政府要坚持依法行政,努力建设法治政府③行政机关要保障公民的知情权、参与权、表达权、监督权④人民可以随心所欲地点评政府的工作A. ①②④ B. ②③④ C. ①②③ D. ①③④9. 在道德与法治课堂上,赵老师为大家展示了下列案例,同学们对此作出了解 读。其中正确的有( )①市人大常委会召开立法听证会-科学立法②刘某经营餐馆却没有办理营业执照-全民守法③执法机关检查疫苗企业生产经营状况-严格执法④人民法院在审理案件时进行庭审直播-公正司法A. ①②③ B. ①③④ C. ①②④ D. ②③④10. 某校学生以“全民守法,中学生在行动”为主题开展了法治情景剧 、法治海 报、模拟法庭等活动。这些活动加深了学生们对法律的认识, 提高了学生们的法 律意识。下列选项中,中学生应该做的是( )①看到有人跌倒立即上前帮助 ②利用假期到社区清除小广告③努力为法治中国建设贡献力量 ④敢于并善于同违法犯罪行为作斗争A. ①② B. ②③ C.②④ D. ③④
(三) 学情分析初中阶段的学生正处在世界观、人生观、价值观形成的关键时期, 加强对这 一年龄段学生的法治教育尤为重要。随着学生生活范围的延展和能力的提升, 本课程的学习逐步扩展到国家和社 会。从生活经验看, 大部分中学生有参与班干竞选、给班级或学校提建议的经验。 从知识储备看, 学生在八年级下册已经学习了我国的根本政治制度、基本政治制 度, 故学习本课知识已经具备了一定的理论基础。但如何理解民主, 还需要通过 不断的学习来建立认同。另外七八年级也打下了一定的法律基础, 学生已经初步 了解个人的成长和参与社会生活必备的基本法律常识。本单元第三课通过介绍社会主义民主制度的确立过程, 中国特色社会主义民 主的本质和实现方式, 引领学生理解社会、参与公共生活, 帮助学生认同民主的 价值,引导学生做负责任的公民。第四课阐释法治是什么、回顾法治中国的历程、 明确为什么选择中国特色社会主义法治道路、怎样建设法治中国及初中生在法治 中国的建设中应扮演怎么样的角色等问题, 帮助学生认识法治中国的进程, 引导 学生正确看待法治中国建设进程中出现或可能出现的问题, 进而把法治作为基本 的生活方式,在实践中培育法治观念。
请写出 推理过程:∵ ,在两边同时加上1得, + = + .两边分别通分得: 思考:请仿照上面的方法,证明“如果 ,那么 ”.(3) 等比性质:猜想 ( ),与 相等吗?能 否证明你的猜想?(引导学生从上述实例中找出证明方法)等比性质:如果 ( ),那么 = .思考:等比性质中,为什么要 这个条件?三、 巩固练习:1.在相同时刻的物高与影长成比例,如果一建筑在地面上影长为50米,高为1.5米的测竿的影长为2.5米 ,那么,该建筑的高是多少米?2.若 则 3.若 ,则 四、 本课小结:1.比例的基本性质:a:b=c:d ;2. 合比性质:如果 ,那么 ;3. 等比性质:如果 ( ),五、 布置作业:课本习题4.2
若a,b,c都是不等于零的数,且a+bc=b+ca=c+ab=k,求k的值.解:当a+b+c≠0时,由a+bc=b+ca=c+ab=k,得a+b+b+c+c+aa+b+c=k,则k=2(a+b+c)a+b+c=2;当a+b+c=0时,则有a+b=-c.此时k=a+bc=-cc=-1.综上所述,k的值是2或-1.易错提醒:运用等比性质的条件是分母之和不等于0,往往忽视这一隐含条件而出错.本题题目中并没有交代a+b+c≠0,所以应分两种情况讨论,容易出现的错误是忽略讨论a+b+c=0这种情况.三、板书设计比例的性质基本性质:如果ab=cd,那么ad=bc如果ad=bc(a,b,c,d都不等于0),那么ab=cd等比性质:如果ab=cd=…=mn(b+d+…+n≠0), 那么a+c+…+mb+d+…+n=ab经历比例的性质的探索过程,体会类比的思想,提高学生探究、归纳的能力.通过问题情境的创设和解决过程进一步体会数学与生活的紧密联系,体会数学的思维方式,增强学习数学的兴趣.
【作业分析】本题考查创新改变生活。防雨神器自动收晾衣服的灵感来源是下 雨忘记收衣服被批评,体现创新是来源于生活、来源于实践。“智能晴雨棚”打 破了传统的只能晾衣服的常规。而由教材内容可知,创新是改革开放的生命, 改革在不断创新中提升发展品质,所以②错误;故本题选 C2. (改编) 利用“安康码”自动定位,即可监测附近新冠肺炎感染病例发病点; 通过输入自己的手机号码,即可通过“通信大数据卡”判断自己是否到访过高 危地区;通过皖事通 APP“密接人员自查”即可查询自己是否曾与新冠肺炎感染 患者接触……疫情发生以来,大数据、健康码、无人机、机器人、测温仪等众 多科技创新成果纷纷登场,助力疫情防控,提高了抗击疫情的精准化水平。这 表明 ( )①标志着我国已经成为科技强国②实施创新驱动发展战略成效显著③创新应成为国家发展进步的中心工作④创新的目的是增进人类福祉,让生活更美好A.①② B.②③ C.①④ D.②④【评价实施主体】教师【评价标准】D【作业分析】本题考查科技创新改变生活中创新的重要性。我国现在还不是科 技强国,但科技自主创新能力不断增强,所以①说法错误。
10.2022 年 4 月 16 日 9 时 56 分,太空“出差”的 3 名宇航员安全顺利出舱,重 回地球的怀抱,神舟十三号载人飞船实现了多个“首次”,不断刷新中国航天 科技的新纪录,展现了中国航天科技的新高度,再次向世界展现出自信和自强。 这份自信的根源是 ( )A.弘扬了中国精神 B.坚持了中国特色自主创新道路C.凝聚了中国力量 D.坚持了中国特色社会主义道路、理论、制度和文化二、非选择题【春晚传情 中华同心】11.“你是中国的母亲,孕育着中国的奇迹,牵系千百年的呼吸,澎湃着中国的 生命 … … ”,虎年春晚,来自海峡两岸暨香港、澳门的四位歌手共同演唱的歌曲 《黄河长江》,唱得大家心潮澎湃。歌曲中,情感深沉的歌词,字字饱含着对祖 国山河的热爱;高亢激昂的旋律,传递出黄河长江穿越古今的力量。(1) 海峡两岸和香港、澳门的四地歌手在春晚的舞台上携手共唱、深情演绎, 向我们传递了怎样的信息?(2) 为了促进海峡两岸和香港、澳门四地的文化相融,你可以提出哪些合理化 建议?
(一) 课标要求中华文化崇尚和谐,蕴含着天人合一的宇宙观、协和万邦的国际观、和而不 同的社会、人心和善的道德观。中国梦是中华民族团结奋斗的最大公约数和最大 同心圆。本单元将“建设和谐中国”作为社会主义核心价值观教育的主题,指出 和谐是国家高强、民族振兴、人民幸福的重要保证,追求和谐价值是中国梦的应 有之义,做自信中国人是对实现中国梦的主体的要求。九年级学生对我国是个多民族国家、中华民族大家庭、维护和促进民族团结 等问题已经具备一定的知识积累。学生能够从爱国情感出发反对分裂,反对暴力 恐怖活动,反对非正义战争,反对阴谋颠覆国家的行为。学生基本了解香港、澳 门回归和台湾问题的史实,对实现祖国统一有着与成人同样的期盼。但是,部分 学生的中华民族共同体意识相对较弱,对于在新时代如何促进民族团结思考不 深。同时,由于大多数学生缺少反对分裂的相关生活,因此,对经验反对分裂的 迫切性、必要性认识不够。部分学生对香港、澳门在新形势下如何继续保持繁荣 稳定、新形势下如何实现两岸统一等问题关注不多。
2.认同民主是具体的, 能够根据本国的国情看待民主实现的方式, 积极主动 参与民主生活,培育民主意识,形式民主权利。3.体会法治在社会中的作用, 认同法治价值观, 感受法治中国的进步, 坚定 走中国特色社会主义法治道路的信念。4.感受见识法治中国是全体社会成员的共同责任, 并树立法治意识, 自觉尊 法学法守法用法,践行法治精神。四、单元作业设计思路(一) 单元作业设计基本原则1.作业设计应全面地反映知识与技能、过程与方法、情感与价值这个三维目 标。在有效作业设计中, 应重视教材学习材料的深度挖掘编写出相应题目, 以促 进学生从课堂学习中获取必要的认识经验, 通过过程获得感受, 通过活动得到一 定的体会,通过探索得一些感悟。2.作业设计应考虑学生的参与度。分层设计, 让不同层次的学生有选择地训 练,可有效地避免不做练习或抄作业现象,大大提高学生的参与度。3.控制作业的时间限度, 少时高效。控制课后作业时间, 关注学生身心健康, 促进学生全面发展。
一、说教材《真理诞生于一百个问号之后》是统编语文小学六年级下册第五单元中的一篇精读课文,属于议论文。课文的题目也是课文的主要观点。课文用三个具体确凿的事例论述了只要善于观察,不断发问,不断解决疑问,锲而不舍地追根求源,就能在现实生活中发现真理。 选编这篇课文的意图,一是让学生了解科学家发现的一般规律——真理诞生于一百个问号之后,从中感受到,领悟到:见微知著,独立思考,锲而不舍,不断探索的科学精神。二是学习课文用具体典型的事例说明观点的写作方法了解议论文的形式。二、说教学目标1.会写“域、惯”等12个字,会写“真理、领域”等词语。 2.能联系上下文理解含义深刻的句子。能仿照课文的写法写一段话,用具体事实说明一个观点。 3.理解三个关于科学发现的故事,能从具体事例中正确理解“真理诞生于一百个问号之后”的含义。
教师姓名 课程名称数学班 级 授课日期 授课顺序 章节名称§2.3 一元二次不等式教 学 目 标知识目标:1、理解一元二次不等式和一元二次方程以及二次函数之间的关系 2、理解一元二次不等式的解集的含义 3、一元二次不等式的解集与二次函数图像的对应 技能目标:1、会解一元二次方程 2、会画二次函数的图像 3、能结合图像写出一元二次不等式的解集 情感目标:体会知识之间的相互关联性,体会数形结合思想的重要性教学 重点 和 难点重点: 1、一元二次不等式的解集的含义 2、一元二次不等式与二次函数的关系 难点: 1、将一元二次不等式和一元二次方程以及二次函数联系起来 2、在函数图像上正确的找到解集对应的部分教 学 资 源《数学》(第一册) 多媒体课件评 估 反 馈课堂提问 课堂练习作 业习题2.3课后记本节课内容是比较重要的,是一元二次方程、一元二次函数、一元二次不等式的结合,相关知识点融会贯通,数形结合的思想方法在这有很好的运用。三种情况只要讲清楚一种,另外两种可由学生自行推出结论。
【教学目标】1、了解方程、不等式、函数的图像之间的联系;2、掌握一元二次不等式的图像解法;【教学重点】1、 方程、不等式、函数的图像之间的联系;2、 一元二次不等式的解法。【教学难点】 一元二次不等式的解法。【教学设计】 1、从复习一次函数图像、一元一次方程、一元一次不等式的联系入手;2、类比观察一元二次函数图像,得到一元二次不等式的图像解法;3、加强知识的巩固与练习,培养学生的数学思维能力。【课时安排】 2课时(90分钟)【教学过程】一、一元二次不等式的解法² 复习回顾1、根据初中所学知识,填写下面表格: △>0 △=0△<0y=ax²+bx+c (a>0)的图像ax²+bx+c=0 (a>0)的根有 2 个根有 1 个根有 0 个根2、观察二次函数y=x²-5x+6的图像,回答下列问题:(1)当y=0时,x取什么值?(2)二次函数y=x²-5x+6的图像与x轴交点的坐标是什么?(3)当y<0时,x的取值范围是什么?总结:由此看到,通过对函数y=x²-5x+6的图像的研究,可以求出不等式x²-5x+6>0与x²-5x+6<0的解集
解析:根据AB∥CD,∠ACD=120°,得出∠CAB=60°.再根据尺规作图得出AM是∠CAB的平分线,即可得出∠MAB的度数.解:∵AB∥CD,∴∠ACD+∠CAB=180°.又∵∠ACD=120°,∴∠CAB=60°.由尺规作图知AM是∠CAB的平分线,∴∠MAB=12∠CAB=30°.方法总结:通过本题要掌握角平分线的作图步骤,根据作图明确AM是∠BAC的角平分线是解题的关键.三、板书设计1.角平分线的性质:角平分线上的点到这个角的两边的距离相等.2.角平分线的作法本节课由于采用了动手操作以及讨论交流等教学方法,从而有效地增强了学生对角以及角平分线的性质的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生在性质的运用上还存在问题,需要在今后的教学与作业中进一步的加强巩固和训练
解:(ax2+bx+1)(3x-2)=3ax3-2ax2+3bx2-2bx+3x-2.∵积不含x2项,也不含x项,∴-2a+3b=0,-2b+3=0,解得b=32,a=94,∴系数a、b的值分别是94,32.方法总结:解决此类问题首先要利用多项式乘法法则计算出展开式,合并同类项后,再根据不含某一项,可得这一项系数等于零,再列出方程解答.三、板书设计1.多项式与多项式的乘法法则:多项式和多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.2.多项式与多项式乘法的应用本节知识的综合性较强,要求学生熟练掌握前面所学的单项式与单项式相乘及单项式与多项式相乘的知识,同时为了让学生理解并掌握多项式与多项式相乘的法则,教学中一定要精讲精练,让学生从练习中再次体会法则的内容,为以后的学习奠定基础
光的速度约为3×108米/秒,一颗人造地球卫星的速度是8×103米/秒,则光的速度是这颗人造地球卫星速度的多少倍?解析:要求光速是人造地球卫星的速度的倍数,用光速除以人造地球卫星的速度,可转化为单项式相除问题.解:(3×108)÷(8×103)=(3÷8)·(108÷103)=3.75×104.答:光速是这颗人造地球卫星速度的3.75×104倍.方法总结:解整式除法的实际应用题时,应分清何为除式,何为被除式,然后应当单项式除以单项式法则计算.三、板书设计1.单项式除以单项式的运算法则:单项式相除,把系数、同底数幂分别相除,作为商的因式;对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.2.单项式除以单项式的应用在教学过程中,通过生活中的情景导入,引导学生根据单项式乘以单项式的乘法运算推导出其逆运算的规律,在探究的过程中经历数学概念的生成过程,从而加深印象
解析:先求出长方形的面积,再求出绿化的面积,两者相减即可求出剩下的面积.解:长方形的面积是xym2,绿化的面积是35x×34y=920xy(m2),则剩下的面积是xy-920xy=1120xy(m2).方法总结:掌握长方形的面积公式和单项式乘单项式法则是解题的关键.三、板书设计1.单项式乘以单项式的运算法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里面含有的字母,则连同它的指数作为积的一个因式.2.单项式乘以单项式的应用本课时的重点是让学生理解单项式的乘法法则并能熟练应用.要求学生在乘法的运算律以及幂的运算律的基础上进行探究.教师在课堂上应该处于引导位置,鼓励学生“试一试”,学生通过动手操作,能够更为直接的理解和应用该知识点
方法总结:在等腰三角形有关计算或证明中,会遇到一些添加辅助线的问题,其顶角平分线、底边上的高、底边上的中线是常见的辅助线.三、板书设计1.等腰三角形的性质:等腰三角形是轴对称图形;等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称“三线合一”),它们所在的直线都是等腰三角形的对称轴;等腰三角形的两个底角相等.2.运用等腰三角性质解题的一般思想方法:方程思想、整体思想和转化思想.本节课由于采用了直观操作以及讨论交流等教学方法,从而有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对等腰三角形的“三线合一”性质理解不透彻,还需要在今后的教学和作业中进一步巩固和提高
一、情境导入1.计算:(1)-6x3y4z2÷(-23x2y2);(2)9mn÷(-6mn)2·(13n2);(3)6(a-b)3c5÷[-35(a-b)2c]·[-2(a-b)3c4].2.m(a+b+c)=am+bm+cm,(am+bm+cm)÷m=am÷m+bm÷m+cm÷m=a+b+c.你能根据多项式乘以单项式的运算归纳出多项式除以单项式的运算法则吗?二、合作探究探究点:多项式除以单项式【类型一】 直接利用多项式除以单项式进行计算计算:(72x3y4-36x2y3+9xy2)÷(-9xy2).解析:根据多项式除以单项式,先用多项式的每一项分别除以这个单项式,然后再把所得的商相加.解:原式=72x3y4÷(-9xy2)+(-36x2y3)÷(-9xy2)+9xy2÷(-9xy2)=-8x2y2+4xy-1.方法总结:多项式除以单项式,先把多项式的每一项都分别除以这个单项式,然后再把所得的商相加.
方法总结:观察表中的数据,发现其中的变化规律,然后根据其增减趋势写出自变量与因变量之间的关系式.三、板书设计1.用关系式表示变量间关系2.表格和关系式的区别与联系:表格能直接得到某些具体的对应值,但不能直接反映变量的整体变化情况;用关系式表示变量之间的关系简单明了,便于计算分析,能方便求出自变量为任意一个值时,相对应的因变量的值,但是需计算.本节课的教学内容是变量间关系的另一种表示方法,这种表示方法学生才接触到,学生感觉有点难.这节课的重点是让学生掌握用关系式与表格表示变量间的关系,难点是理解这两种表示方法的优缺点.就此问题,通过让学生对几个例子比较、讨论、总结、归纳两种方法的优点来解决,这样学生就能很好地区分这两种表示方法,并能对不同的问题选择恰当的方法
解析:由于多边形(三边以上的)不具有稳定性,将其转化为三角形后木架的形状就不变了.根据具体多边形转化为三角形的经验及题中所加木条可找到一般规律.解:过n边形的一个顶点可以作(n-3)条对角线,把多边形分成(n-2)个三角形,所以,要使一个n边形木架不变形,至少需要(n-3)根木条固定.方法总结:将多边形转化为三角形时,所需要的木条根数,可从具体到一般去发现规律,然后验证求解.三、板书设计1.边边边:三边对应相等的两个三角形全等,简写成“边边边”或“SSS”.2.三角形的稳定性本节课从操作探究活动入手,有效地激发了学生的学习积极性和探究热情,提高了课堂的教学效率,促进了学生对新知识的理解和掌握.从课堂教学的情况来看,学生对“边边边”掌握较好,达到了教学的预期目的.存在的问题是少数学生在辅助线的构造上感到困难,不知道如何添加合理的辅助线,还需要在今后的教学中进一步加强巩固和训练
AD=CD,∠ADE=∠CDG,DE=GD,∴△ADE≌△CDG(SAS),∴AE=CG;(2)设AE与DG相交于M,AE与CG相交于N.在△GMN和△DME中,由(1)得∠CGD=∠AED,又∵∠GMN=∠DME,∠DEM+∠DME=90°,∴∠CGD+∠GMN=90°,∴∠GNM=90°,∴AE⊥CG.三、板书设计1.边角边:两边及其夹角分别相等的两个三角形全等,简写成“边角边”或“SAS”.两边和其中一边的对角对应相等的两个三角形不一定全等.2.全等三角形判定与性质的综合运用本节课从操作探究入手,具有较强的操作性和直观性,有利于学生从直观上积累感性认识,从而有效地激发了学生的学习积极性和探究热情,提高了课堂的教学效率,促进了学生对新知识的理解和掌握.从课堂教学的情况来看,学生对“边角边”掌握较好,但在探究三角形的大小、形状时不会正确分类,需要在今后的教学和作业中进一步加强分类思想的巩固和训练