【答案】B [由直线方程知直线斜率为3,令x=0可得在y轴上的截距为y=-3.故选B.]3.已知直线l1过点P(2,1)且与直线l2:y=x+1垂直,则l1的点斜式方程为________.【答案】y-1=-(x-2) [直线l2的斜率k2=1,故l1的斜率为-1,所以l1的点斜式方程为y-1=-(x-2).]4.已知两条直线y=ax-2和y=(2-a)x+1互相平行,则a=________. 【答案】1 [由题意得a=2-a,解得a=1.]5.无论k取何值,直线y-2=k(x+1)所过的定点是 . 【答案】(-1,2)6.直线l经过点P(3,4),它的倾斜角是直线y=3x+3的倾斜角的2倍,求直线l的点斜式方程.【答案】直线y=3x+3的斜率k=3,则其倾斜角α=60°,所以直线l的倾斜角为120°.以直线l的斜率为k′=tan 120°=-3.所以直线l的点斜式方程为y-4=-3(x-3).
解析:①过原点时,直线方程为y=-34x.②直线不过原点时,可设其方程为xa+ya=1,∴4a+-3a=1,∴a=1.∴直线方程为x+y-1=0.所以这样的直线有2条,选B.答案:B4.若点P(3,m)在过点A(2,-1),B(-3,4)的直线上,则m= . 解析:由两点式方程得,过A,B两点的直线方程为(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又点P(3,m)在直线AB上,所以3+m-1=0,得m=-2.答案:-2 5.直线ax+by=1(ab≠0)与两坐标轴围成的三角形的面积是 . 解析:直线在两坐标轴上的截距分别为1/a 与 1/b,所以直线与坐标轴围成的三角形面积为1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三个顶点A(0,4),B(-2,6),C(-8,0).(1)求三角形三边所在直线的方程;(2)求AC边上的垂直平分线的方程.解析(1)直线AB的方程为y-46-4=x-0-2-0,整理得x+y-4=0;直线BC的方程为y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直线AC的方程为x-8+y4=1,整理得x-2y+8=0.(2)线段AC的中点为D(-4,2),直线AC的斜率为12,则AC边上的垂直平分线的斜率为-2,所以AC边的垂直平分线的方程为y-2=-2(x+4),整理得2x+y+6=0.
4.已知△ABC三个顶点坐标A(-1,3),B(-3,0),C(1,2),求△ABC的面积S.【解析】由直线方程的两点式得直线BC的方程为 = ,即x-2y+3=0,由两点间距离公式得|BC|= ,点A到BC的距离为d,即为BC边上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面积为4.5.已知直线l经过点P(0,2),且A(1,1),B(-3,1)两点到直线l的距离相等,求直线l的方程.解:(方法一)∵点A(1,1)与B(-3,1)到y轴的距离不相等,∴直线l的斜率存在,设为k.又直线l在y轴上的截距为2,则直线l的方程为y=kx+2,即kx-y+2=0.由点A(1,1)与B(-3,1)到直线l的距离相等,∴直线l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)当直线l过线段AB的中点时,A,B两点到直线l的距离相等.∵AB的中点是(-1,1),又直线l过点P(0,2),∴直线l的方程是x-y+2=0.当直线l∥AB时,A,B两点到直线l的距离相等.∵直线AB的斜率为0,∴直线l的斜率为0,∴直线l的方程为y=2.综上所述,满足条件的直线l的方程是x-y+2=0或y=2.
切线方程的求法1.求过圆上一点P(x0,y0)的圆的切线方程:先求切点与圆心连线的斜率k,则由垂直关系,切线斜率为-1/k,由点斜式方程可求得切线方程.若k=0或斜率不存在,则由图形可直接得切线方程为y=b或x=a.2.求过圆外一点P(x0,y0)的圆的切线时,常用几何方法求解设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0,由圆心到直线的距离等于半径,可求得k,进而切线方程即可求出.但要注意,此时的切线有两条,若求出的k值只有一个时,则另一条切线的斜率一定不存在,可通过数形结合求出.例3 求直线l:3x+y-6=0被圆C:x2+y2-2y-4=0截得的弦长.思路分析:解法一求出直线与圆的交点坐标,解法二利用弦长公式,解法三利用几何法作出直角三角形,三种解法都可求得弦长.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交点A(1,3),B(2,0),故弦AB的长为|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.设两交点A,B的坐标分别为A(x1,y1),B(x2,y2),则由根与系数的关系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的长为√10.解法三圆C:x2+y2-2y-4=0可化为x2+(y-1)2=5,其圆心坐标(0,1),半径r=√5,点(0,1)到直线l的距离为d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦长为("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦长|AB|=√10.
1.直线2x+y+8=0和直线x+y-1=0的交点坐标是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程组{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交点坐标是(-9,10).答案:B 2.直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,则k的值为( )A.-24 B.24 C.6 D.± 6解析:∵直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,可设交点坐标为(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故选A.答案:A 3.已知直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,若l1⊥l2,则点P的坐标为 . 解析:∵直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,联立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴点P的坐标为(3,3).答案:(3,3) 4.求证:不论m为何值,直线(m-1)x+(2m-1)y=m-5都通过一定点. 证明:将原方程按m的降幂排列,整理得(x+2y-1)m-(x+y-5)=0,此式对于m的任意实数值都成立,根据恒等式的要求,m的一次项系数与常数项均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤
本节课选自《2019人教A版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习直线的一般式方程
直线的一般式方程是直线的点斜式,斜截式,两点式,截距式方程的综合表示形式,与前面学习的其他形式的直线方程的一个不同点是:直线的一般式方程能够表示平面上的所有直线,而点斜式、斜截式、两点式方程,都不能表示与x轴垂直的直线.通过研究直线方程的几种形式,指出它们都是关于x,y的二元一次方程,然后从两个方面进一步研究直线和二元一次方程的关系,使学生明确一个重要事实:在平面直角坐标系中,任何一条直线的方,可以写成关于x,y的一元二次方程;反过来,任何一个关于x,y的一次方程都表示一条直线,为以后继续学习“曲线和方程”打下基础.
本节内容是本章的基础内容,也是本章的重点内容,对前面学习两直线位置关系的判定提供了必要的基础支持,也是后面要学习的两直线的交点、点到直线的距离、两平行线间的距离等知识的必需形式.大纲把教学目标定位在“掌握直线的一般方程”,属于较高层次的要求.本节课注重综合分析归纳,是高中数学教学的重要方面.
课程目标 | 学科素养 |
A.了解直线的一般式方程的形式特征,理解直线的一般式方程与二元一次方程的关系; 2.能正确地进行直线的一般式方程与特殊形式的方程的转化; 3.能运用直线的一般式方程解决有关问题. | 1.数学抽象:一般式方程与二元一次方程的关系 2.逻辑推理:直线的一般式方程与特殊形式的方程的转化 3.数学运算:运用直线的一般式方程解决有关问题 4.直观想象:直线与方程的关系 |
1.教学重点:了解二元一次方程与直线的对应关系,掌握直线的一般形式
2.教学难点:能根据所给条件求直线方程,并能在几种形式间相互转化
多媒体
教学过程 | 教学设计意图 核心素养目标 |
一、问题导学 问题:由下列各条件,写出直线的方程,并画出图形. (1)斜率是1,经过点A(1,8); (2)在x轴和y轴上的截距分别是-7,7; (3)经过两点P1(-1,6),P2(2,9); (4)在y轴上的截距是7,倾斜角是45. (1)y-8=x-1;(2)=1;(3);(4)y=x+7.如果我们画出这4条 直线的图象,你会惊奇地发现:这4条直线是重合的.事实上,它们的方程都可以化简为x-y+7=0.这样前几种直线方程就有了统一的形式,这就是本节我们要学习的直线的一般式方程. 同学们,根据前面我们学习的直线方程形式,分别利用点斜式、截距式、两点式和斜截式,可得到四种情况下的直线方程分别为 二、探究新知 1.直线的一般式方程 (1).在平面直角坐标系中,对于任何一条直线,都有一个表示这条直线的关于x,y的_____________;任何关于x,y的二元一次方程都表示________.方程_____________________________________叫做直线方程的一般式. 二元一次方程; 一条直线; Ax+By+C=0(其中A、B不同时为0) (2).直线一般式方程的结构特征 ①方程是关于x,y的二元一次方程. ②方程中等号的左侧自左向右一般按x,y常数的先后顺序排列. ③x的系数一般不为分数和负数. ④虽然直线方程的一般式有三个参数,但只需两个独立的条件即可求得直线的方程. 2.直线的一般式方程与其他形式的互化 1.在方程Ax+By+C=0(A,B不同时为零)中,A,B,C为何值时,方程表示的直线 (1)平行于x轴;(2)平行于y轴;(3)与x轴重合;(4)与y轴重合. 答案:当A=0时,方程变为y=-,当C≠0时表示的直线平行于x轴,当C=0时与x轴重合;当B=0时,方程变为x=-,当C≠0时表示的直线平行于y轴,当C=0时与y轴重合. 2.直线方程2x+3y+1=0化为斜截式为 ; 化为截距式为 . 解析:方程化为3y=-2x-1,则y=-x-; 方程化为2x+3y=-1,得-2x-3y=1,即=1. 答案:y=-x; =1 3.两条直线的位置关系 3.判断下列两组直线是否平行或垂直: (1)x+2y-7=0; 2x+4y-7=0. (2)4x-y+3=0, 3x+12y-11=0. 解:(1)∵14-22=0且2(-7)-4(-7)≠0,∴两直线平行. (2)∵43+(-1)12=0,∴两直线垂直. 三、典例解析 例1 根据下列条件分别写出直线的方程,并化为一般式方程. (1)斜率是,且经过点A(5,3); (2)斜率为4,在y轴上的截距为-2; (3)经过A(-1,5),B(2,-1)两点; (4)在x轴、y轴上的截距分别是-3,-1. 思路分析:先选择合适的形式将直线方程写出来,再化为一般式. 解:(1)由点斜式方程可知,所求直线方程为y-3=(x-5),化为一般式方程为x-y+3-5=0. (2)由斜截式方程可知,所求直线方程为y=4x-2, 化为一般式方程为4x-y-2=0. (3)由两点式方程可知, 所求直线方程为, 化为一般式方程为2x+y-3=0. (4)由截距式方程可得,所求直线方程为=1,化为一般式方程为x+3y+3=0. 直线的一般式方程的特征 求直线方程时,要求将方程化为一般式方程,其形式一般作如下设定:x的系数为正;系数及常数项一般不出现分数;一般按含x项、含y项、常数项的顺序排列. 跟踪训练1 根据下列各条件写出直线的方程,并化成一般式. (1)斜率是-,经过点A(8,-2); (2)经过点B(4,2),且平行于x轴; (3)在x轴和y轴上的截距分别是,-3; (4)经过两点P1(3,-2),P2(5,-4). 解:(1)由点斜式方程,得y-(-2)=-(x-8),即x+2y-4=0. (2)由点斜式方程,得y-2=0. (3)由截距式方程,得=1,即2x-y-3=0. (4)由两点式方程,得,即x+y-1=0. 【例2】 (1)已知直线l1:2x+(m+1)y+4=0与直线l2:mx+3y-2=0平行,求实数m的值; (2)已知直线l1:(a+2)x+(1-a)y-1=0与直线l2:(a-1)x+(2a+3)y+2=0垂直,求实数a的值. 思路分析:利用在一般式方程下,两直线平行或垂直的条件求解.解:(1)由23-m(m+1)=0,得m=-3或m=2. 当m=-3时,l1:x-y+2=0,l2:3x-3y+2=0, 显然l1与l2不重合,∴l1∥l2. 同理,当m=2时,l1:2x+3y+4=0,l2:2x+3y-2=0,l1与l2不重合,l1∥l2, 故m的值为2或-3. (2)由直线l1⊥l2,得(a+2)(a-1)+(1-a)(2a+3)=0,解得a=1. 故当a=1或a=-1时,直线l1⊥l2. 延伸探究已知点A(2,2)和直线l:3x+4y-20=0. 求:(1)过点A和直线l平行的直线方程; (2)过点A和直线l垂直的直线方程. 解:(1)将与直线l平行的直线方程设为3x+4y+C1=0, 又过点A(2,2),所以32+42+C1=0,所以C1=-14. 所求直线方程为3x+4y-14=0. (2)将与l垂直的直线方程设为4x-3y+C2=0, 又过点A(2,2),所以42-32+C2=0,所以C2=-2, 所以直线方程为4x-3y-2=0. 1.利用一般式解决直线平行与垂直问题的策略 直线l1:A1x+B1y+C1=0,直线l2:A2x+B2y+C2=0, (1)若l1∥l2⇔A1B2-A2B1=0且B1C2-B2C1≠0(或A1C2-A2C1≠0). (2)若l1⊥l2⇔A1A2+B1B2=0. 2.与已知直线平行(垂直)的直线方程的求法 (1)与直线Ax+By+C=0平行的直线方程可设为Ax+By+m=0(m≠C). (2)与直线Ax+By+C=0垂直的直线方程可设为Bx-Ay+m=0. 跟踪训练 2 已知直线l的方程为3x+4y-12=0,求直线l的方程,l满足 (1)过点(-1,3),且与l平行; (2)过点(-1,3),且与l垂直. 思路分析:可先求斜率,再利用点斜式方程求解;也可利用平行、垂直直线系方程,利用待定系数法求解. 解:(方法1)由题设l的方程可化为y=-x+3,∴l的斜率为-. (1)∵直线l与l平行,∴l的斜率为-. 又∵直线l过(-1,3),由点斜式知方程为y-3=-(x+1),即3x+4y-9=0. (2)由l与l垂直,∴l的斜率为, 又过(-1,3),由点斜式可得方程为y-3=(x+1),即4x-3y+13=0. (方法2)(1)由l与l平行,可设l方程为3x+4y+m=0. 将点(-1,3)代入上式得m=-9.∴所求直线方程为3x+4y-9=0. (2)由l与l垂直,可设其方程为4x-3y+n=0.将(-1,3)代入上式得n=13. ∴所求直线方程为4x-3y+13=0. 金题典例 (1)设直线l的方程为(a-1)x+y-2-a=0(a∈R).若直线l不过第三象限,则a的取值范围为________. (2)设直线l的方程为2x+(k-3)y-2k+6=0(k≠3),根据下列条件分别确定k的值: ①直线l的斜率为-1; ②直线l在x轴,y轴上的截距之和等于0. 解析:(1)[1,+∞) 把直线l化成斜截式,得y=(1-a)x+a+2,因为直线l不过第三象限,该直线的斜率小于等于零,且直线在y轴上的截距大于等于零. 即解得a≥1. 所以a的取值范围为[1,+∞). (2)①因为直线l的斜率存在, 所以直线l的方程可化为y=-x+2.由题意得-=-1,解得k=5. ②直线l的方程可化为+=1.由题意得k-3+2=0,解得k=1. 变式探究:1.典例(1)中若将方程改为“x+(a-1)y-2-a=0(a∈R)”,其他条件不变,又如何求解? [解] (1)当a-1=0,即a=1时,直线为x=3,该直线不过第三象限,符合. (2)当a-1≠0,即a≠1时,直线化为斜截式方程为y=x-,因为直线l不过第三象限,故该直线的斜率小于等于零,且直线在y轴上的截距大于等于零. 即解得a>1. 由(1)(2)可知a≥1. 2.若典例(1)中的方程不变,当a取何值时,直线不过第二象限? [解] 把直线l化成斜截式,得y=(1-a)x+a+2,因为直线l不过第二象限,故该直线的斜率大于等于零,且直线在y轴上的截距小于等于零.即解得a≤-2. 直线恒过定点的求解策略 (1)将方程化为点斜式,求得定点的坐标. (2)将方程变形,把x,y作为参数的系数,因为此式子对任意的参数的值都成立,故需系数为零,解方程组可得x,y的值,即为直线过的定点. |
通过求解4个条件下的直线方程,体会不同直线方程的适用条件,及时提出问题,让学生体会学习直线方程一般式的必要性。
理解直线一般式的方程特点,能进行直线方程间的互化。发展学生逻辑推理,直观想象、数学抽象和数学运算的核心素养。
通过典型例题的分析和解决,让学生加深对直线一般式的理解和应用。发展学生数学抽象、直观想象、逻辑推理的核心素养。
通过典例解析,进一步灵活运用直线一般式,并能合理选择直线的方程形式,解决相关问题。 |
三、达标检测 1.思考辨析 (1)二元一次方程Ax+By+C=0(A,B不同时为0)可表示平面内的任何一条直线.( ) (2)当C=0时,方程Ax+By+C=0(A、B不同时为0)表示的直线过原点.( ) (3)当B=0,A≠0时,方程Ax+By+C=0表示的直线与y轴平行.( ) (4)任何一条直线的一般式方程都能与其他四种形式互化.( ) 答案 (1)√ (2)√ (3) 当C=0时,直线与y轴重合. (4) 当直线与坐标轴平行或重合时,不能转化为截距式或斜截式. 2.两直线ax-by-1=0(ab≠0)与bx-ay-1=0(ab≠0)的图象可能是图中的哪一个( ) 解析:当a<0,b>0时,直线ax-by=1在x轴上的截距<0,在y轴上的截距-<0;bx-ay=1在x轴上的截距>0,在y轴上的截距->0.只有B满足.故选B. 答案:B 3.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y=2=0 D.x+2y-1=0 答案A 解析:设所求直线方程为x-2y+c=0,把点(1,0)代入可求得c=-1. 所以所求直线方程为x-2y-1=0.故选A. 4.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a=________. 答案:1或-3 解析:依题意得:a(a+2)=31,解得a=1或a=-3. 5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线. (1)求实数m的范围; (2)若该直线的斜率k=1,求实数m的值. 解析: (1)由解得m=2, 若方程表示直线,则m2-3m+2与m-2不能同时为0,故m≠2. (2)由-=1,解得m=0. |
通过练习巩固本节所学知识,通过学生解决问题,发展学生的数学运算、逻辑推理、直观想象、数学建模的核心素养。
|
转载请注明出处!本文地址:
https://www.lfppt.com/worddetails_91678824.html1、该生学习态度端正 ,能够积极配合老师 ,善于调动课堂气氛。 能够积极完成老师布置的任务。学习劲头足,听课又专注 ,做事更认 真 ,你是同学们学习的榜样。但是,成绩只代表昨天,并不能说明你 明天就一定也很优秀。所以,每个人都应该把成绩当作自己腾飞的起 点。2、 你不爱说话 ,但勤奋好学,诚实可爱;你做事踏实、认真、为 人忠厚 ,是一个品行端正、有上进心、有良好的道德修养的好学生。在学习上,积极、主动,能按时完成老师布置的作业,经过努力 ,各 科成绩都有明显进步,你有较强的思维能力和学习领悟力,学习也有 计划性,但在老师看来,你的潜力还没有完全发挥出来,学习上还要有持久的恒心和顽强的毅力。
一是要把好正确导向。严格落实主体责任,逐条逐项细化任务,层层传导压力。要抓实思想引领,把理论学习贯穿始终,全身心投入主题教育当中;把理论学习、调查研究、推动发展、检视整改等有机融合、一体推进;坚持学思用贯通、知信行统一,努力在以学铸魂、以学增智、以学正风、以学促干方面取得实实在在的成效。更加深刻领会到******主义思想的科学体系、核心要义、实践要求,进一步坚定了理想信念,锤炼了政治品格,增强了工作本领,要自觉运用的创新理论研究新情况、解决新问题,为西北矿业高质量发展作出贡献。二是要加强应急处事能力。认真组织开展好各类理论宣讲和文化活动,发挥好基层ys*t阵地作用,加强分析预警和应对处置能力,提高发现力、研判力、处置力,起到稳定和引导作用。要坚决唱响主旋律,为“打造陕甘片区高质量发展标杆矿井”、建设“七个一流”能源集团和“精优智特”新淄矿营造良好的舆论氛围。三是加强舆情的搜集及应对。加强职工群众热点问题的舆论引导,做好舆情的收集、分析和研判,把握时、度、效,重视网上和网下舆情应对。
二是深耕意识形态。加强意识形态、网络舆论阵地建设和管理,把握重大时间节点,科学分析研判意识形态领域情况,旗帜鲜明反对和抵制各种错误观点,有效防范处置风险隐患。积极响应和高效落实上级党委的决策部署,确保执行不偏向、不变通、不走样。(二)全面深化党的组织建设,锻造坚强有力的基层党组织。一是提高基层党组织建设力量。压实党建责任,从政治高度检视分析党建工作短板弱项,有针对性提出改进工作的思路和办法。持续优化党建考核评价体系。二是纵深推进基层党建,打造坚强战斗堡垒。创新实施党建工作模式,继续打造党建品牌,抓实“五强五化”党组织创建,广泛开展党员教育学习活动,以实际行动推动党建工作和经营发展目标同向、部署同步、工作同力。三是加强高素质专业化党员队伍管理。配齐配强支部党务工作者,把党务工作岗位作为培养锻炼干部的重要平台。
二要专注于解决问题。根据市委促进经济转型的总要求,聚焦“四个经济”和“双中心”的建设,深入了解基层科技工作、学术交流、组织建设等方面的实际情况,全面了解群众的真实需求,解决相关问题,并针对科技工作中存在的问题,采取实际措施,推动问题的实际解决。三要专注于急难愁盼问题。优化“民声热线”,推动解决一系列基层民生问题,努力将“民声热线”打造成主题教育的关键工具和展示平台。目前,“民声热线”已回应了群众的8个政策问题,并成功解决其中7个问题,真正使人民群众感受到了实质性的变化和效果。接下来,我局将继续深入学习主题教育的精神,借鉴其他单位的优秀经验和方法,以更高的要求、更严格的纪律、更实际的措施和更好的成果,不断深化主题教育的实施,展现新的风貌和活力。
今年3月,市政府出台《关于加快打造更具特色的“水运XX”的意见》,提出到2025年,“苏南运河全线达到准二级,实现2000吨级舶全天候畅行”。作为“水运XX”建设首战,谏壁闸一线闸扩容工程开工在即,但项目开工前还有许多实际问题亟需解决。结合“到一线去”专项行动,我们深入到谏壁闸一线,详细了解工程前期进展,实地察看谏壁闸周边环境和舶通航情况,不断完善施工设计方案。牢牢把握高质量发展这个首要任务,在学思践悟中开创建功之业,坚定扛起“走在前、挑大梁、多做贡献”的交通责任,奋力推动交通运输高质量发展持续走在前列。以学促干建新功,关键在推动高质量发展持续走在前列。新时代中国特色社会主义思想着重强调立足新发展阶段、贯彻新发展理念、构建新发展格局,推动高质量发展,提出了新发展阶段我国经济高质量发展要坚持的主线、重大战略目标、工作总基调和方法论等,深刻体现了这一思想的重要实践价值。
三、2024年工作计划一是完善基层公共文化服务管理标准化模式,持续在公共文化服务精准化上探索创新,围绕群众需求,不断调整公共文化服务内容和形式,提升群众满意度。推进乡镇(街道)“114861”工程和农村文化“121616”工程,加大已开展活动的上传力度,确保年度目标任务按时保质保量完成。服务“双减”政策,持续做好校外培训机构审批工作,结合我区工作实际和文旅资源优势,进一步丰富我市义务教育阶段学生“双减”后的课外文化生活,推动“双减”政策走深走实。二是结合文旅产业融合发展示范区,全力推进全域旅游示范区创建,严格按照《国家全域旅游示范区验收标准》要求,极推动旅游产品全域布局、旅游要素全域配置、旅游设施全域优化、旅游产业全域覆盖。
1、该生学习态度端正 ,能够积极配合老师 ,善于调动课堂气氛。 能够积极完成老师布置的任务。学习劲头足,听课又专注 ,做事更认 真 ,你是同学们学习的榜样。但是,成绩只代表昨天,并不能说明你 明天就一定也很优秀。所以,每个人都应该把成绩当作自己腾飞的起 点。2、 你不爱说话 ,但勤奋好学,诚实可爱;你做事踏实、认真、为 人忠厚 ,是一个品行端正、有上进心、有良好的道德修养的好学生。在学习上,积极、主动,能按时完成老师布置的作业,经过努力 ,各 科成绩都有明显进步,你有较强的思维能力和学习领悟力,学习也有 计划性,但在老师看来,你的潜力还没有完全发挥出来,学习上还要有持久的恒心和顽强的毅力。
二是全力推进在谈项目落地。认真落实“首席服务官”责任制,切实做好上海中道易新材料有机硅复配硅油项目、海南中顾垃圾焚烧发电炉渣综合利用项目、天勤生物生物实验基地项目、恺德集团文旅康养产业项目、三一重能风力发电项目、中国供销集团冷链物流项目跟踪对接,协调解决项目落户过程中存在的困难和问题,力争早日实现成果转化。三是强化招商工作考核督办。持续加大全县招商引资工作统筹调度及业务指导,贯彻落实项目建设“6421”时限及“每月通报、季度排名、半年分析、年终奖励”相关要求,通过“比实绩、晒单子、亮数据、拼项目”,进一步营造“比学赶超”浓厚氛围,掀起招商引资和项目建设新热潮。四是持续优化园区企业服务。
(二)坚持问题导向,持续改进工作。要继续在提高工作效率和服务质量上下功夫,积极学习借鉴其他部门及xx关于“四零”承诺服务创建工作的先进经验,同时主动查找并着力解决困扰企业和群众办事创业的难点问题。要进一步探索创新,继续优化工作流程,精简审批程序,缩短办事路径,压缩办理时限,深化政务公开,努力为企业当好“保姆”,为群众提供便利,不断适应新时代人民群众对政务服务的新需求。(三)深化内外宣传,树立良好形象。要深入挖掘并及时总结作风整顿“四零”承诺服务创建工作中形成的典型经验做法,进一步强化内部宣传与工作交流,推动全市创建工作质效整体提升。要面向社会和公众庄严承诺并积极践诺,主动接受监督,同时要依托电台、电视台、报纸及微信、微博等各类媒体大力宣传xx队伍作风整顿“四零”承诺服务创建工作成果,不断扩大社会知情面和群众知晓率。
(五)服务群众提效能方面。一是政府采购服务提档升级。建成“全区一张网”,各类采购主体所有业务实现“一网通办,提升办事效率;全面实现远程开标和不见面开标,降低供应商成本;要求400万元以上工程采购项目预留采购份额提高至采购比例的40%以上,支持中小企业发展。2022年,我区政府采购荣获”中国政府采购奖“,并以全国第一的成绩获得数字政府采购耕耘奖、新闻宣传奖,以各省中第一的成绩获得年度创新奖。二是财政电子票据便民利民。全区财政电子票据开具量突破1亿张,涉及资金810.87亿元。特别是在医疗领域,全区241家二级以上公立医疗机构均已全部上线医疗收费电子票据,大大解决了群众看病排队等待时间长、缴费取票不方便的问题,让患者”省心、省时、省力“。
一、活动开展情况及成效按照省委、市委对“大学习、大讨论、大调研”活动的部署要求,县委立即行动,于8月20日组织召开常委会会议,专题传达学习省委X在读书班上的讲话精神。5月2日,县委召开“大学习、大讨论、大调研”活动推进会,及时对活动开展的相关要求、任务进行再安排再部署,会后制定并下发了活动实施方案、重点课题调研方案、宣传报道方案等系列文件,有效指导活动开展。5月17日、9月1日,县委再次召开常委会会议,专题听取“大学习、大讨论、大调研”活动开展情况汇报,研究部署下阶段工作。9月13日,召开全县“大学习大讨论大调研”活动工作推进座谈会,深入贯彻全省、全市“大学习大讨论大调研”活动工作推进座谈会精神,总结交流活动经验,对下一阶段活动开展进行安排部署。“大学习、大讨论、大调研”活动的有序开展,为砥砺前行、底部崛起的X注入了强大的精神动力。
1.市政基础设施项目5项,总建设里程2.13km,投资概算2.28亿元。其中,烔炀大道(涉铁)工程施工单位已进场,项目部基本建成,正在办理临时用地、用电及用水等相关工作;中铁佰和佰乐(巢湖)二期10KV外线工程已签订施工合同;黄麓镇健康路、纬四路新建工程均已完成清单初稿编制,亟需黄麓镇完成图审工作和健康路新建工程的前期证件办理;公安学院配套道路项目在黄麓镇完成围墙建设后即可进场施工。2.公益性建设项目6项,总建筑面积15.62万㎡,投资概算10.41亿元。其中,居巢区职业教育中心新建工程、巢湖市世纪新都小学扩建工程已完成施工、监理招标挂网,2月上旬完成全部招标工作;合肥职业技术学院大维修三期已完成招标工作,近期签订施工合同后组织进场施工;半汤疗养院净化和医用气体工程已完成招标工作;半汤疗养院智能化工程因投诉暂时中止;巢湖市中医院(中西医结合医院)新建工程正在按照既定计划推进,预计4月中下旬挂网招标。