解:(1)设第一次落地时,抛物线的表达式为y=a(x-6)2+4,由已知:当x=0时,y=1,即1=36a+4,所以a=-112.所以函数表达式为y=-112(x-6)2+4或y=-112x2+x+1;(2)令y=0,则-112(x-6)2+4=0,所以(x-6)2=48,所以x1=43+6≈13,x2=-43+6<0(舍去).所以足球第一次落地距守门员约13米;(3)如图,第二次足球弹出后的距离为CD,根据题意:CD=EF(即相当于将抛物线AEMFC向下平移了2个单位).所以2=-112(x-6)2+4,解得x1=6-26,x2=6+26,所以CD=|x1-x2|=46≈10.所以BD=13-6+10=17(米).方法总结:解决此类问题的关键是先进行数学建模,将实际问题中的条件转化为数学问题中的条件.常有两个步骤:(1)根据题意得出二次函数的关系式,将实际问题转化为纯数学问题;(2)应用有关函数的性质作答.
解析:(1)连接BI,根据I是△ABC的内心,得出∠1=∠2,∠3=∠4,再根据∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可证出IE=BE;(2)由三角形的内心,得到角平分线,根据等腰三角形的性质得到边相等,由等量代换得到四条边都相等,推出四边形是菱形.解:(1)BE=IE.理由如下:如图①,连接BI,∵I是△ABC的内心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四边形BECI是菱形.证明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的内心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)证得IE=BE,∴BE=CE=BI=IC,∴四边形BECI是菱形.方法总结:解决本题要掌握三角形的内心的性质,以及圆周角定理.
方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.变式训练:见《学练优》本课时练习“课后巩固提升” 第7题【类型三】 构造直角三角形解决面积问题在△ABC中,∠B=45°,AB=2,∠A=105°,求△ABC的面积.解析:过点A作AD⊥BC于点D,根据勾股定理求出BD、AD的长,再根据解直角三角形求出CD的长,最后根据三角形的面积公式解答即可.解:过点A作AD⊥BC于点D,∵∠B=45°,∴∠BAD=45°,∴AD=BD=22AB=22×2=1.∵∠A=105°,∴∠CAD=105°-45°=60°,∴∠C=30°,∴CD=ADtan30°=133=3,∴S△ABC=12(CD+BD)·AD=12×(3+1)×1=3+12. 方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.
首先请学生分析:过B、C作梯形ABCD的高,将梯形分割成两个直角三角形和一个矩形来解.教师可请一名同学上黑板板书,其他学生笔答此题.教师在巡视中为个别学生解开疑点,查漏补缺.解:作BE⊥AD,CF⊥AD,垂足分别为E、F,则BE=23m.在Rt△ABE中,∴AB=2BE=46(m).∴FD=CF=23(m).答:斜坡AB长46m,坡角α等于30°,坝底宽AD约为68.8m.引导全体同学通过评价黑板上的板演,总结解坡度问题需要注意的问题:①适当添加辅助线,将梯形分割为直角三角形和矩形.③计算中尽量选择较简便、直接的关系式加以计算.三、课堂小结:请学生总结:解直角三角形时,运用直角三角形有关知识,通过数值计算,去求出图形中的某些边的长度或角的大小.在分析问题时,最好画出几何图形,按照图中的边角之间的关系进行计算.这样可以帮助思考、防止出错.四、布置作业
解析:(1)把点A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根据对称轴是x=-3,求出b=6,即可得出答案;(2)根据CD∥x轴,得出点C与点D关于x=-3对称,根据点C在对称轴左侧,且CD=8,求出点C的横坐标和纵坐标,再根据点B的坐标为(0,5),求出△BCD中CD边上的高,即可求出△BCD的面积.解:(1)把点A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵对称轴是x=-3,∴-b2=-3,∴b=6,∴c=5,∴抛物线的解析式是y=x2+6x+5;(2)∵CD∥x轴,∴点C与点D关于x=-3对称.∵点C在对称轴左侧,且CD=8,∴点C的横坐标为-7,∴点C的纵坐标为(-7)2+6×(-7)+5=12.∵点B的坐标为(0,5),∴△BCD中CD边上的高为12-5=7,∴△BCD的面积=12×8×7=28.方法总结:此题考查了待定系数法求二次函数的解析式以及二次函数的图象和性质,注意掌握数形结合思想与方程思想的应用.
问题2、如何用测角仪测量一个低处物体的俯角呢?和测量仰角的步骤是一样的,只不过测量俯角时,转动度盘,使度盘的直径对准低处的目标,记下此时铅垂线所指的度数,同样根据“同角的余角相等”,铅垂线所指的度数就是低处的俯角.活动三:测量底部可以到达的物体的高度.“底部可以到达”,就是在地面上可以无障碍地直接测得测点与被测物体底部之间的距离.要测旗杆MN的高度,可按下列步骤进行:(如下图)1.在测点A处安置测倾器(即测角仪),测得M的仰角∠MCE=α.2.量出测点A到物体底部N的水平距离AN=l.3.量出测倾器(即测角仪)的高度AC=a(即顶线PQ成水平位置时,它与地面的距离).根据测量数据,就能求出物体MN的高度.在Rt△MEC中,∠MCE=α,AN=EC=l,所以tanα= ,即ME=tana·EC=l·tanα.又因为NE=AC=a,所以MN=ME+EN=l·tanα+a.
如图,课外数学小组要测量小山坡上塔的高度DE,DE所在直线与水平线AN垂直.他们在A处测得塔尖D的仰角为45°,再沿着射线AN方向前进50米到达B处,此时测得塔尖D的仰角∠DBN=61.4°,小山坡坡顶E的仰角∠EBN=25.6°.现在请你帮助课外活动小组算一算塔高DE大约是多少米(结果精确到个位).解析:根据锐角三角函数关系表示出BF的长,进而求出EF的长,得出答案.解:延长DE交AB延长线于点F,则∠DFA=90°.∵∠A=45°,∴AF=DF.设EF=x,∵tan25.6°=EFBF≈0.5,∴BF=2x,则DF=AF=50+2x,故tan61.4°=DFBF=50+2x2x=1.8,解得x≈31.故DE=DF-EF=50+31×2-31=81(米).所以,塔高DE大约是81米.方法总结:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.
解在角度单位状态为“度”的情况下(屏幕显示出 ),按下列顺序依次按键:显示结果为36.538 445 77.再按键:显示结果为36゜32′18.4.所以,x≈36゜32′.例5 已知cot x=0.1950,求锐角x.(精确到1′)分析根据tan x= ,可以求出tan x的值,然后根据例4的方法就可以求出锐角x的值.四、课堂练习1. 使用计算器求下列三角函数值.(精确到0.0001)sin24゜,cos51゜42′20″,tan70゜21′,cot70゜.2. 已知锐角a的三角函数值,使用计算器求锐角a.(精确到1′)(1)sin a=0.2476; (2)cos a=0.4174;(3)tan a=0.1890; (4)cot a=1.3773.五、学习小结内容总结不同计算器操作不同,按键定义也不一样。同一锐角的正切值与余切值互为倒数。在生活中运用计算器一定要注意计算器说明书的保管与使用。方法归纳在解决直角三角形的相关问题时,常常使用计算器帮助我们处理比较复杂的计算。
然后,她沿着坡度是i=1∶1(即tan∠CED=1)的斜坡步行15分钟抵达C处,此时,测得A点的俯角是15°.已知小丽的步行速度是18米/分,图中点A、B、E、D、C在同一平面内,且点D、E、B在同一水平直线上.求出娱乐场地所在山坡AE的长度(参考数据:2≈1.41,结果精确到0.1米).解析:作辅助线EF⊥AC于点F,根据速度乘以时间得出CE的长度,通过坡度得到∠ECF=30°,通过平角减去其他角从而得到∠AEF=45°,即可求出AE的长度.解:作EF⊥AC于点F,根据题意,得CE=18×15=270(米). ∵tan∠CED=1,∴∠CED=∠DCE=45°.∵∠ECF=90°-45°-15°=30°,∴EF=12CE=135米.∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°-45°-60°-30°=45°,∴AE=2EF=1352≈190.4(米).所以,娱乐场地所在山坡AE的长度约为190.4米.方法总结:解决本题的关键是能借助仰角、俯角和坡度构造直角三角形,并结合图形利用三角函数解直角三角形.
解析:正多边形的边心距、半径、边长的一半正好构成直角三角形,根据勾股定理就可以求解.解:(1)设正三角形ABC的中心为O,BC切⊙O于点D,连接OB、OD,则OD⊥BC,BD=DC=a.则S圆环=π·OB2-π·OD2=πOB2-OD2=π·BD2=πa2;(2)只需测出弦BC(或AC,AB)的长;(3)结果一样,即S圆环=πa2;(4)S圆环=πa2.方法总结:正多边形的计算,一般是过中心作边的垂线,连接半径,把内切圆半径、外接圆半径、边心距,中心角之间的计算转化为解直角三角形.变式训练:见《学练优》本课时练习“课后巩固提升”第4题【类型四】 圆内接正多边形的实际运用如图①,有一个宝塔,它的地基边缘是周长为26m的正五边形ABCDE(如图②),点O为中心(下列各题结果精确到0.1m).(1)求地基的中心到边缘的距离;(2)已知塔的墙体宽为1m,现要在塔的底层中心建一圆形底座的塑像,并且留出最窄处为1.6m的观光通道,问塑像底座的半径最大是多少?
解析:点E是BC︵的中点,根据圆周角定理的推论可得∠BAE=∠CBE,可证得△BDE∽△ABE,然后由相似三角形的对应边成比例得结论.证明:∵点E是BC︵的中点,即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法总结:圆周角定理的推论是和角有关系的定理,所以在圆中,解决相似三角形的问题常常考虑此定理.三、板书设计圆周角和圆心角的关系1.圆周角的概念2.圆周角定理3.圆周角定理的推论本节课的重点是圆周角与圆心角的关系,难点是应用所学知识灵活解题.在本节课的教学中,学生对圆周角的概念和“同弧所对的圆周角相等”这一性质较容易掌握,理解起来问题也不大,而对圆周角与圆心角的关系理解起来则相对困难,因此在教学过程中要着重引导学生对这一知识的探索与理解.还有些学生在应用知识解决问题的过程中往往会忽略同弧的问题,在教学过程中要对此予以足够的强调,借助多媒体加以突出.
解析:(1)由切线的性质得AB⊥BF,因为CD⊥AB,所以CD∥BF,由平行线的性质得∠ADC=∠F,由圆周角定理的推论得∠ABC=∠ADC,于是证得∠ABC=∠F;(2)连接BD.由直径所对的圆周角是直角得∠ADB=90°,因为∠ABF=90°,然后运用解直角三角形解答.(1)证明:∵BF为⊙O的切线,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半径为203.方法总结:运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
有人说:“如果你失去了今天,你不算失败,因为明天会再来;如果你失去了金钱,你不算失败,因为人生的价值不在金钱;但是如果你失去了文明,沾染了陋习,那你就是彻彻底底的失败,因为你已经失去了做人的真谛。”没错,我们做人的行为准则就是要讲究文明,抛弃陋习。我们祖国素以“礼仪之邦”著称于世,“孔融四岁让梨”的故事更是家喻户晓。现在之所以重提文明礼仪,那是因为我们在接受教育的时候,把对文化知识的学习放在了相对重要的位子,加上受外界的一些不良影响而忽略了社会公德、文明习惯的养成,而这恰恰从本质上体现了一个人的思想品质。文明就是我们素质的前沿,拥有了它,我们就拥有了宝贵的财富。首先,要培养自己高尚的心灵,从心里深深的扎根,在日常生活的每一言每一行都靠心来约束自己。其次,要在实践中用文明道德标准规范自己,做到谈吐文明,礼貌待人,讲究卫生。
广告客户名称(甲方): 地址: 广告发布单位名称(乙方): *文化传媒有限责任公司 地址: 云南省*市 根据《中华人民共和国民法典》、《中华人民共和国广告法》等有关法律法规规章的规定,甲乙双方在自愿、平等、协商一致的基础上,签订本合同。第一条:广告发布约定(一)广告内容:(1)广告发布媒体: * (2)广告发布内容: 视频推广 (3)广告发布期数:自 20xx 年 月 日起至 20xx 年 月 日止,共 1 期 (4)广告发布位置: 头条 (二)合同费用及支付方式:1、广告发布费用:总计人民币: 元,(大写: 圆整)2、甲方在本合同签订当天付定金 元(人民币 元整),待乙方制作后发布广告之前付清剩余广告款 元(人民币 元整)给乙方。3、款项支付方式:□现金 □电子银行 □支付宝 □微信等转帐。第二条:甲方权利义务一、甲方应当按照我国《广告法》第二十四条的规定向乙方提供以下文件原件及经核对后加盖甲方印章的复印件:①营业执照以及其它生产、经营资格证明文件;②质量检验机构对广告中有关商品质量内容出具的证明文件;③广告审批机构对特殊产品或服务广告内容(例如:发布药品、医疗器械、农药、兽药等商品并不仅限于此)出具的广告审查批准文件;④专利、注册商标的证书和确认广告内容真实、合法,符合社会主义精神文明建设的要求的其它证明文件。
鉴于甲方委托乙方开发网站,帮助甲方树立企业形象,扩大宣传,拓宽销售渠道,为明确双方责任,经双方协商,甲乙双方在平等自愿的基础上,签订此合同,以期双方共同遵守。第一条 合作内容1. 甲方筹建internet网站,并委托乙方提供开发技术服务和提供发布及其他相关服务,具体服务内容见附录一。2. 乙方具备从事合同项目技术服务的资格和实力,并接受甲方委托就甲方拟筹建的Internet网站提供技术服务;3. 就本合同乙方提供的服务,甲方支付相应的费用。 第二条 费用及支付方式1. 本合同共计人民币(大写) 元整。2. 费用支付:甲方分2期支付合同金额。合同签订之日内甲方先付50%,待网站完成及调试半个月无技术问题后支付尾款第三条 甲方权利和义务1. 甲方负责提供制作所需的所有相关资料,并保证资料的合法性;2. 甲方开展的业务必须符合国家法律和社会公共利益;3. 甲方有权对乙方设计的网页提出修改意见,由双方协商更改;4. 甲方有义务在与乙方约定的时间内给予确认或提出修改意见;5. 甲方按合同约定向乙方按时支付费用;6. 甲方对于本合同中的网页、图像具有排版使用权。7. 甲方委托乙方筹建internet网站需经甲方验收测试合格后方能发布。8. 甲方委托乙方筹建的internet网站,甲方有权利拥有本合同标的中相关作品、程序、文件程序说明文档。第四条 乙方权利和义务1. 提供专人和甲方联系;2. 按照附录一的要求,根据甲方提供的资料进行项目的开发;3. 双方合作期间,乙方对甲方提供的文字及图片资料未经甲方许可不得以任何方式泄露给第三方;4. 乙方对甲方提供的文字及图片资料中涉及的包括知识产权在内的一切法律问题不承担任何法律责任;5. 乙方所制作的网页支持IE5.0及以上版本,并支持1024*768分辨率;6. 在制作过程中,对甲方陆续提出的修改要求,乙方应尽力协助实现,并交甲方验收通过。对有可能影响合同约定的完成时间的要求,乙方有权提出延期请求,由双方协商确定具体时间;如果乙方达不到甲方网站设计需求,且无更好的解决方案,乙方应退还甲方所支付费用。
统编教材语文三年级下册第七单元口语交际 《劝说》说课稿 今日,我说课的题目是统编教材小学语文三年级下册第七单元口语交际《劝说》。我主要从以下六个方面进展说课,一、说教材,二、说学情,三、说教学目标,四、说教学过程,五、说板书设计,六、说教学反思。 一、说教材 “劝说”是日常人际交往中常用的沟通方式,也是现代公民现实生活的需要。本课教材由三局部组成。 第一局部是一幅情境图,一个同学坐在楼梯扶手上往下滑。通过泡泡图里三个同学的不同劝说,引发学生思索并争论:你觉得那个同学更有可能承受谁的劝说?为什么?在比拟中帮忙学生感知、理解劝说的要领。
强调重力对生长素分布的影响,为下面的内容讲解做铺垫,明确植物出现向光性与生长素分布不均有关。复习旧知识,产生首因效应,巩固和加强记忆。通过植物向光性是生长素分布较多而促进生长,进而提出“对于植物来说,生长素是不是越多越好”这个问题,引发思考,锻炼思维。说明生长素浓度对不同器官产生的影响不同,让学生对这一情况有一个整体印象。结合数学知识逐步分析图上各点和各曲线的含义,引导学生得出不同器官对生长素浓度的敏感性顺序,为解释横放植物“S”型生长做铺垫。通过对曲线的分析,得出低生长素浓度起促进作用,高浓度有抑制作用这种双重性,并得出其双重性表现。通过以上的分析和总结,对横放植物“S”型生长进行解释,达到首尾呼应的效果。采用“蒙太奇”手法,引申到“太空中,横放植物将会如何生长”这个问题,引发学生的联想和思考,以这种提问方式结课为下节课的开课做了铺垫,掌握了主动权。
二、社区卫生服务中心突发安全事故种类社区卫生服务中心突发安全事故含医院重大火灾安全事故,社区卫生服务中心重大交通安全事故,社区卫生服务中心重大危险药品安全事故,重大自然灾害事故,社区卫生服务中心重大特种设备安全事故,社区卫生服务中心外出大型活动安全事故,社区卫生服务中心外来暴力及医闹侵害事故等。三、社区卫生服务中心突发安全事故报告及处理程序1、实行社区卫生服务中心主要领导对事故报告的制度。2、社区卫生服务中心发生或接到突发安全事故报警后,随即启动应急预案,同时向区卫健局和安全监督部门报告,并及时向公安(消防)等相关部门报警请求援助。社区卫生服务中心本着“先控制,后处置,救人第一,减少损失”的原则,果断处理,积极抢救,指导患者离开危险区域,保护好社区卫生服务中心贵重物品,维护现场秩序,做好事故现场保护工作,上交社区卫生服务中心突发安全事故有关材料,做好善后处理工作。
(1)管道检查井、室的毒气:已建成的管道或井、室中常常会存在有害气体浓度超标,如在进入前未进行检查或检查方法不当,可能造成爆炸或人员中毒,导致人员伤亡等;(2)管道爆裂冒水:如供水主管道发生爆裂,可能造成路面坍塌、沉陷以及造成人员伤亡等。
老师们、同学们:今天我讲的主题是:“珍爱生命、关注安全”。校园的安全关系到同学们能否健康成长,能否顺利完成学业,它是学校发展的支点和保障,是我们做好各项工作的基础和前提,必须常抓不懈。在第十三个安全月中,学校将开展形式多样的安全宣传教育活动,希望同学们主动接受安全教育,切实提高安全意识和自我保护能力。今天,我就校内安全、校外安全和心理安全三个方面给大家做一些提醒和要求。一、校内安全1、体育课安全上体育课前要作好准备活动,穿运动鞋,身上不要带金属物件,操作体育器材时要规范小心,要避免自伤和误伤。不要离开体育课场地自行活动,如果感觉身体不适,要及时告知老师。2、课间安全同学们要养成良好的日常行为习惯,上下楼梯靠右行走,严禁在楼道、走廊里奔跑追逐,严禁翻爬扶栏、窗户,严禁在校园内疾走狂奔,严禁在楼道踢球。3、用火用电安全同学们在日常使用过程中,要爱护我们的电器设施。不要用手触摸插座、电线和灯管,发现电器损坏后不要擅自修理,应及时向老师和学校报告,请专人修理;严禁将火柴、打火机等火种带进校园。