一、旧知回顾1、有理数的加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加。(2)绝对值不等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。(3)互为相反数的两数相加得零。(4)一个数与零相加,仍得这个数。注意:一个有理数由符号和绝对值两部分组成,进行加法运算时,应注意确定和的符号和绝对值.
课程:数学课题: 3.1.1函数的概念课型:讲授课课时:2课时授课班级:2015级南口班授课时间:2016年3月1日授课地点:南口校区教 学 目 标知识目标1.能用函数语言描述图像、解析式中自变量与函数值的依赖关系; 2.会计算函数的定义域,理解值域的含义 3.会用语言表述自变量与函数值间的对应关系能力目标通过对实例的分析,培养学生的观察能力,抽象概括及逻辑思维能力 通过计算函数的定义域,培养学生的计算能力素养目标函数概念的思想蕴含了很多数学思维,也渗透生活中及其他学科范围内,通过学习使学生认同函数的抽象性。教学重 点理解函数的概念教学难 点判断两个函数是否相同教学方 法引导启发,讲练结合教学资 源演示文稿板 书 设 计3.1函数的概念 设集合A、B为非空数集,对于确定的对 应法则f下,在集合A中取定任意一个数x, 在集合B中都有唯一确定的数f(x)与之相 对应,则称f:A→B为集合A到集合B的一 个函数. 记作:y=f(x),x∈A X叫自变量,y叫函数值,集合A叫函数的 定义域,所有函数值组成的集合叫值域。
设计意图:知识的掌握需要由浅到深,由易到难.我所设计的三个例题难度依次上升,根据由简到难的原则,先让学生学会熟悉选用公式,再进一步到公式的变形应用,巩固知识.特别是第三题特别强调了运用法则的前提:必需要底数相同.为加深学生对法则的理解记忆,形成“学以致用”的思想.同时为了调动学生思考,接下来让学生进入反馈练习阶段,进一步巩固记忆.4、知识反馈,提高反思练习1(1)口答设计意图:根据夸美纽斯的教学巩固性原则,为了培养学生独立解决问题的能力,在例题讲解后,通过让个别同学上黑板演演,其余同学在草稿本上完成练习的方式来掌握学生的学习情况,从而对讲解内容作适当的补充提醒.同时,在活动中引起学生的好奇心和强烈的求知欲,在获得经验和策略的同时,获得良好的情感体验.
4、巩固新知,拓展新知(羊羊竞技场)本环节在学生对性质基本熟悉后安排了四组训练题,为避免学生应用性质的粗糙感,以小羊展开竞技表演为背景,让学生在轻松愉快的氛围中层层递进,不断深入,达到强化性质,拓展性质的目的。提高学生的辨别力;进一步增强学生运用性质解决问题的能力;训练学生的逆向思维能力,增强学生应变能力和解题灵活性.5、提炼小结完善结构(羊羊总结会)“通过本节课的学习,你在知识上有哪些收获,你学到了哪些方法?”引导学生自主总结。设计意图:使学生对本节课所学知识的结构有一个清晰的认识,能抓住重点进行课后复习。以及通过对学习过程的反思,掌握学习与研究的方法,学会学习,学会思考。6、课堂检测,发展潜能(大战灰太狼)
3.作者是如何表达出自己的观点的?明确:作者首先以瑰丽的语言盛赞圆明园在人类文明中的地位,其后,又以比喻及反讽的修辞,将英法联军劫掠圆明园的罪行揭露而出,两者形成鲜明的对比,从而引出谴责英法联军远征中国行为的观点。目标导学三:了解作者心中的圆明园及英法联军的强盗行径1.作者是如何描述他心目中的圆明园的?明确:圆明园是幻想的某种规模巨大的典范,一座言语无法形容的建筑,某种恍若月宫的建筑。作者用大理石,玉石,青铜,瓷器,雪松,宝石,绸缎,神殿,后宫,城楼,神像,异兽,琉璃,珐琅,黄金,脂粉,一座座花园,一方方水池,一眼眼喷泉,成群的天鹅、朱鹭和孔雀等无数华贵的象征,铺就了一张华贵的想象画面,构成他心中的圆明园。正如他所说“总而言之,请你假设人类幻想的某种令人眼花缭乱的洞府,其外观是神庙,是宫殿,那就是这座园林”。
8、小结:不管因数中间是否有0,都要用这个一位数去乘多位数里每一个数位上的数,即使十位上是0也要乘。这就是今天我们学习的新知识,因数中间有0的乘法。(板题:因数中间有0的乘法)[设计意图:通过学生的自主探索,获得对“0和一个数相乘得0”的理性认识的基础上,进一步运用估算、口算以及学过的笔算方法上算法上进行探索,中间有0的三位数都是接近整百的数,这为学生运用估算提供了很好的机会。通过估算,能使学生对笔算结果有一个大致的把握,从而可以在很大程度上减少笔算中错误的发生,通过教学,努力使学生感受到:把估算和笔算结合起来,可以提高计算的正确率。逐步培养学生在笔算时自觉进行估算的意识。]三.巩固练习谈话:现在正是小朋友们长身体的时候,所以我们一定要参加体育锻炼呦!今天,我们一起去参加一个智力长跑,好吗?
学生思考回答后归纳:随着征服地区的扩大,出现了许多新问题,新矛盾,原有的公民法已经无法适应这些新变化(质疑)。公民法适用范围限于罗马公民,用来调整他们之间的关系,罗马公民受到法律保护,并享受法律赋予的权利。在扩张中纳入到疆域中的许多外邦人不能受到法律的保护,在这种背景下,公民法发展成万民法。万民法的出现,一方面由于公民法的狭隘性,另一方面伴随对外战争的胜利,奴隶制在罗马得到快速发展。为了更加有效地保护奴隶主的私人利益,迫切需要建立和完善法律制度来维护统治阶级的利益不受侵犯。问题探究:万民法的制定产生哪些作用?学生思考回答后总结:万民法取代公民法,协调了罗马人和外邦人之间的关系及外邦人相互之间的关系,对于在庞大帝国内微细,协调各地区的民族关系、社会矛盾也祈祷重要作用。万民法使法律具有了更大的适用范围,也成为巩固罗马统治的重要工具。
(一)、教材地位:我说课的内容是人教版高二历史(必修3)第五单元《从“师夷长技”到维新变法》。本课主要讲述了鸦片战争后中国思想界发生的巨大变化,所讲述内容对中国近百年的历史走向,对近代中国政治发展所产生的影响是至关重要的,所以这节课在教材中具有重要的地位和作用,同时也是本册书中的重要章节。(二)、课标要求:《高中历史新课程标准》对这一节内容作了这样的要求:了解鸦片战争以后中国人学习西方 寻求变革的思想历程,理解维新变法思想在近代中国社会发展中所起的作用。(三)、教学目标:根据课标要求、教材内容和学生的具体情况,确立以下教学目标:1、知识与能力:(1)识记:林则徐被称为“开演看世界的第一人”;魏源的“师夷长技以制夷”思想;洋务派“师夷长技以自强”思想;早期维新思想和90年代维新思想;
4、维新思想推动下的变法运动虽然失败了。但这是中国近代真正意义上的一次思想解放潮流,为什么?展开:维新派提倡西学,兴民权,对封建专制制度和传统观念进行了冲击,促进了中国人民的觉醒,为资产阶级民主思想的传播奠定了基础,具有思想解放的启蒙作用。是一次救亡图存的爱国运动,也是一次发展资本主义的改革运动;他们提倡资产阶级新学,批判封建主义旧学,引导人们重新认识世界,他们痛感民族危机的严重,号召人们奋起救国,谋求国家的独立富强;给古老的中国社会注入的活力是不可低估的,站在历史长河的高度看,由传统农耕社会向近代工业社会转变是一股不可抗拒的历史潮流,尽管它在19世纪末的中国遭到了暂时挫折,但对清朝的封建专制统治却是一次巨大的强烈的冲击波,它留下的痕迹是永不磨灭的,是永远鼓舞与启迪后人的。
2、学习有关政治知识学习政治知识有助于提高辨别是非能力,坚持正确政治方向;有助于紧扣时代脉搏,开阔眼界;有助于树立国家观念,维护国家利益;有助于增强民主法制观念培养公民意识;有助于提高参与政治生活的能力。3、参与政治生活,贵在实践教师活动:同学们参加过什么政治活动?你还知道有哪些可以参与的政治活动?学生活动:积极思考。我国公民参与政治生活的方式多种多样,无论什么方式,重要的是参与,在实践中才能才能不断提高自己的政治素质和参与政治生活的能力。(三)课堂总结、点评本节内容讲述了我国的政治生活的主要内容和中学生参与政治生活的方式、途径,这对我们今后提高自身政治素质,增强参与政治生活的能力等,证明了奋斗方向。
1973年4月的一天,一名男子站在纽约的街头,掏出一个约有两块砖头大的无线电话,并开始通话。这个人就是手机的发明者马丁,当时他是摩托罗拉公司的工程技术人员。这是当时世界上第一部移动电话。1985年,第一台现代意义上的可以商用的移动电话诞生。它是将电源和天线放置在一个盒子里,重量达3公斤。与现代形状接近的手机诞生于1987年,其重量大约750克,与今天仅重60克的手机相比,像一块大砖头。此后,手机的“瘦身”越来越迅速。1991年,手机重量为250克左右。1996年秋,r出现了体积为100立方厘米、重量100克的手机。此后,又进一步小型化,轻型化,到1999年就轻到了60克以下。手机的体积越来越小,但功能却越来越多。以前的手机是用来通话的,现在的手机是用来享受的。今天,手机可以是相机、游戏机、音乐播放器、信用卡、电影院……手机带来的不仅仅是通信方式的改变,更是生活方式的变革。
2.能力目标(1)通过本课的学习,要求着重培养学生全面地、联系地看问题和分析问题的能力;培养学生综合运用知识的能力,以及运用所学知识分析、处理和解决实际问题的能力。(2)使学生初步具有从错综复杂的联系中认识和发现事物本质的、固有的、内在的联系的能力,初步学会用全面的、联系的观点看问题的能力。(3)使学生初步具有坚持和把握整体与部分辩证关系的能力,初步具有运用系统优化的方法安排自己学习和生活的能力。在处理问题时,既要看到整体与部分之间的联系又要看到它们的区别,掌握系统优化的方法,学会运用综合性的思维方式认识事物和处理生活、学习和工作中的问题。3.情感、态度和价值观目标(1)树立唯物辩证法的联系观,自觉抵制形而上学的静止观。坚持用联系的观点看问题,自觉维护人类生存的环境,确信一切以时间、地点和条件为转移,是我们正确认识和把握事物、在认识世界和改造世界的活动中不断取得成功的关键。
2、理解目标(1)发展的普遍性;(2)事物发展的道路和方向;事物发展的形式;3、运用目标(1)根据所学知识,结合相关原理,分析说明自然界、人类社会是无限发展的。了解唯物辩证法是关于世界普遍联系的科学,又是关于世界永恒发展的科学。(2)根据有关原理,理解事物发展的前途是光明的,道路是曲折的,说明新事物必然战胜旧事物是宇宙间不可抗拒的规律。(3)结合古人有关的名言警句,组织学生讨论生活和学习中的具体问题,分析量变和质变的辨证统一关系对于生活和实践的意义。二、能力目标1、通过学习,培养学生正确认识事物发展的方向、发展的道路和发展的形式,用发展的眼光看问题、分析问题的能力。2、使学生初步具有运用科学发展观观察、分析和处理自然和社会现象的能力。3、使学生初步形成正确对待生活中的失败与成功、困难挫折与理想目标之间关系的能力。
二、分析题20世纪9 0年代以来,世界各国把发展循环经济、建立循环型社会看作是实施可持续发展战略的重要途径和实现方式。传统经济是一种“资源―产品―废弃物”单向流动的线形经济。循环经济倡导的是一种与环境和谐的经济发展模式,它要求把经济活动组织成一个“资源-产品-再生资源”的反复循环流程,做到生产和消费“污染排放量最小化、废物资源化和无害化”,以最小的成本获得最大的经济效益和生态效益。分析说明循环经济所倡导的经济发展模式是如何体现联系观点的。【答案提示】(1)联系具有普遍性和客观性。循环经济是资源、产品、再生资源相互联系的有机统一整体,它体现了联系的普遍性和客观性。(2)联系具有多样性。“资源-产品-再生资源”的反复循环体现了原因和结果在一定条件下可以相互转化;体现了三者之间的内部联系、外部联系等。(3)循环经济表明人们可以根据事物的固有联系,改变事物的状态,建立新的具体联系,以实现经济效益、生态效益和社会效益的统一。
【课标要求和解读】1.课标内容:举例说明旅游景观的观赏方法。活动建议——结合自己的旅游经历,交流欣赏旅游景观的体验。2.课标解读:要正确欣赏旅游资源,首先要以了解旅游资源的不同类型和景观特点为前提,并且对中外著名旅游景点有必要的了解;不同旅游景观形成原因不同,所以欣赏方法不同;了解欣赏旅游景观的主要方法——了解景观特点、选择合适的观察位置、把握有利的观察时机、洞悉景观的文化定位和历史内涵、激发健康的审美情趣。【教学目标和要求】1. 知识目标:明确旅游景观的描述和欣赏是多角度的,掌握不同景观的一般欣赏方法——了解景观特点、精选点位、把握时机、洞悉文化定位。2. 能力目标:初步学会不同的地文景观、气象景观、水域景观的正确的欣赏方法。3. 德育目标:培养审美情趣,提高审美素质;激发学生探索神奇大自然的兴趣;巩固学生热爱自然和祖国大好河山的感情。
本节课选自《普通高中课程标准数学教科书-必修一》(人教A版)第三章《函数的概念与性质》,本节课是第2课时,本节课主要学习函数的三种表示方法及其简单应用,进一步加深对函数概念的理解。课本从引进函数概念开始就比较注重函数的不同表示方法:解析法,图象法,列表法.函数的不同表示方法能丰富对函数的认识,帮助理解抽象的函数概念.特别是在信息技术环境下,可以使函数在形与数两方面的结合得到更充分的表现,使学生通过函数的学习更好地体会数形结合这种重要的数学思想方法.因此,在研究函数时,要充分发挥图象的直观作用.课程目标 学科素养A.在实际情景中,会根据不同的需要选择恰当的方法(解析式法、图象法、列表法)表示函数;B.了解简单的分段函数,并能简单地应用;1.数学抽象:函数解析法及能由条件求函数的解析式;2.逻辑推理:求函数的解析式;
课本从引进函数概念开始就比较注重函数的不同表示方法:解析法,图象法,列表法.函数的不同表示方法能丰富对函数的认识,帮助理解抽象的函数概念.特别是在信息技术环境下,可以使函数在形与数两方面的结合得到更充分的表现,使学生通过函数的学习更好地体会数形结合这种重要的数学思想方法.因此,在研究函数时,要充分发挥图象的直观作用.在研究图象时,又要注意代数刻画以求思考和表述的精确性.课本将映射作为函数的一种推广,这与传统的处理方式有了逻辑顺序上的变化.这样处理,主要是想较好地衔接初中的学习,让学生将更多的精力集中理解函数的概念,同时,也体现了从特殊到一般的思维过程.课程目标1、明确函数的三种表示方法;2、在实际情境中,会根据不同的需要选择恰当的方法表示函数;3、通过具体实例,了解简单的分段函数,并能简单应用.
本节通过学习用二分法求方程近似解的的方法,使学生体会函数与方程之间的关系,通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用,进一步认识到函数是描述客观世界变化规律的基本数学模型,能初步运用函数思想解决一些生活中的简单问题。课程目标1.了解二分法的原理及其适用条件.2.掌握二分法的实施步骤.3.通过用二分法求方程的近似解,使学生体会函数零点与方程根之间的联系,初步形成用函数观点处理问题的意识.数学学科素养1.数学抽象:二分法的概念;2.逻辑推理:用二分法求函数零点近似值的步骤;3.数学运算:求函数零点近似值;4.数学建模:通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用.
《数学1必修本(A版)》的第五章4.5.2用二分法求方程的近似解.本节课要求学生根据具体的函数图象能够借助计算机或信息技术工具计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法,从中体会函数与方程之间的联系;它既是本册书中的重点内容,又是对函数知识的拓展,既体现了函数在解方程中的重要应用,同时又为高中数学中函数与方程思想、数形结合思想、二分法的算法思想打下了基础,因此决定了它的重要地位.发展学生数学直观、数学抽象、逻辑推理和数学建模的核心素养。课程目标 学科素养1.通过具体实例理解二分法的概念及其使用条件.2.了解二分法是求方程近似解的常用方法,能借助计算器用二分法求方程的近似解.3.会用二分法求一个函数在给定区间内的零点,从而求得方程的近似解. a.数学抽象:二分法的概念;b.逻辑推理:运用二分法求近似解的原理;
新知探究:向量的减法运算定义问题四:你能根据实数的减法运算定义向量的减法运算吗?由两个向量和的定义已知 即任意向量与其相反向量的和是零向量。求两个向量差的运算叫做向量的减法。我们看到,向量的减法可以转化为向量的加法来进行:减去一个向量相当于加上这个向量的相反向量。即新知探究(二):向量减法的作图方法知识探究(三):向量减法的几何意义问题六:根据问题五,思考一下向量减法的几何意义是什么?问题七:非零共线向量怎样做减法运算? 问题八:非零共线向量怎样做减法运算?1.共线同向2.共线反向小试牛刀判一判(正确的打“√”,错误的打“×”)(1)两个向量的差仍是一个向量。 (√ )(2)向量的减法实质上是向量的加法的逆运算. ( √ )(3)向量a与向量b的差与向量b与向量a的差互为相反向量。 ( √ )(4)相反向量是共线向量。 ( √ )