提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

小学美术人教版四年级上册《第7课今天我值日》教学设计说课稿

  • 人教部编版道德与法制三年级上册家庭的记忆说课稿

    这个板块的活动设计通过学生对比自己和父母的童年,了解自己家庭的形成和经历的变化,激发学生热爱家庭、珍惜当下生活的情感。新课程标准下的品德与社会课堂要让学习过程成为学生完整生命投入的过程,成为其生活的一部分。因此,学生学习的过程不仅要经受认知的挑战,从中获得理智上的满足,更在情感、心灵的充盈上获得情感的体验,在回归生活的过程中进一步得到正确的价值引领。因而,在听故事、品故事之后,我又设计了欣赏歌曲这一环节。因为在教师绘声绘色的故事声中,学生不知不觉中触动了自己的情感之弦,不少学生会迫不及待地要求发言。所以,歌曲的欣赏会让更多的学生引起情感上的共鸣,让他们的情绪达到极点,从而为整堂课画上一个圆满的句号。这四个活动板块的设计,就是通过直观感知——深入了解——回忆共情——对 比感悟这样的过程来达到本课时的教学目标。

  • 人教部编版道德与法制三年级上册生命最宝贵说课稿

    回忆点滴,理解养育不易过渡:孕育不易,养育更是需要付出无数的心血。(一)课件出示:成长过程中家人照顾我们的照片1. 思考:为了呵护我们这个小生命,家人还做过哪些事情?3. 预设:( 1)父母为我们的付出(2)家中其他亲人对我们的付出(二)小组交流,全班汇报,教师小结。(板书:成长不易)(三)拓展讨论 过渡:妈妈孕育我们不易,家人养育我们不易,我们的成长不易,我们的生命来之不易!(板书:生命来之不易) 思考:如何对待我们来之不易的生命呢?总结:通过回忆生活的点点滴滴,让我们感觉到,我们的生命在成长中倾注了 家人无尽的关爱和呵护。在孕育的过程中妈妈承受了很多的辛苦,在养育生命的过 程中也倾注了全家人无限的心血,因此生命真的很宝贵,我们要学会保护自己来之 不易的生命!四、说板书设计 板书设计:此板书力求让学生抓住课文主线,突出教学重难点,简单明了,便于掌握。以上是我的说课内容,谢谢各位聆听!

  • 人教部编版道德与法制三年级上册心中的“110”说课稿

    设计意图:不要轻信陌生人,防止上当受骗。 活动三:怎样与陌生人交往首先,学生阅读教材第 63 页的的小故事《智捉小偷》,教师引 导学生说一说陈宇遇事后的表现,自己如果遇到类似的情况会怎么处 理。然后,小组内先辨析教材第65 页四幅图中主人公的做法是否合 适,为什么?再说一说与陌生人交往的方法,全班汇报交流,教师相 机引导,板书:遇事情 多动脑。设计意图:学会与陌生人交往的方法,既不能把陌生人都当成坏 人,也要有一定的警惕性,要多动脑筋,用智慧保护自己。环节三:课堂小结,内化提升 学生谈一谈学习本节课的收获,教师相机引导。设计意图:梳理总结,体验收获与成功的喜悦,内化提升学生的认识与情感。环节四:回归生活,拓展延伸以小组为单位出一期板报,主题是与陌生人交往。设计意图: 将课堂所学延伸到学生的日常生活中,有利于落实行 为实践。

  • 人教部编版道德与法制五年级上册选举产生班委会说课稿

    设计意图:引导学生了解班委会的组成,明确各班委的工作任务。活动三:认真选举班委会教师再次用课件出示导入环节中的图文资料,引导学生说说李东为什么能成为我们的班长?然后,学生阅读教材第28页活动园《我选谁》,教师引导学生说说:如果你是王晓鹏,会选谁来做班长呢?并结合材料说说理由。最后,小组合作,选择担任班长需要的条件,并按照重要性进行排序。设计意图:引导学生了解班委要具有管理能力、沟通能力、服务意识、民主作风等。环节三:课堂小结,内化提升生活中,要远离烟酒,拒绝毒品。设计意图:梳理总结,体验收获与成功的喜悦,内化提升学生的认识与情感。环节四:布置作业,课外延伸以我选我当班长为主题写一篇日记。设计意图:将课堂所学延伸到学生的日常生活中,有利于落实行为实践。

  • 人教部编版道德与法制五年级上册主动拒绝烟酒与毒品说课稿

    师:看着这些逝去的生命,我们该痛恨谁? 师:香烟真是既害人又害己!活动 4:毒品更危险 师:饮酒呢?还有一样比烟酒更危险,那就是毒品。请听一个真实的故事:阿辉的经历给你最深的感受是什么?(播放录音:花季少年的噩梦)师:为什么说“吸毒一口,落入虎口”?强制戒毒,能使他终身摆脱毒品吗?师:吸毒对个人、家庭和社会有哪些危害?课前有小组查阅了相 关资料,请他们来跟大家介绍一下吧。师:听完介绍,你知道了什么? 出示《中华人民共和国禁毒法》 活动 5:受到危害有原因师:可是有的青少年明知有危害,还是抽烟、饮酒甚至吸毒。这 是什么原因吗?师:因此,对于烟酒和毒品,我们都应该提高警惕、主动拒绝。 那么怎么拒绝?下节课我们一同来学习。

  • 人教部编版道德与法制六年级上册公民意味着什么说课稿

    居住在中华人民共和国境内的年满十六周岁的中国公民,应当依照本法的规定申请领取居民身份证:未满十六周岁的中国公民,可以依照本法的规定申请领取居民身份证。居民身份证登记的项目包括:姓名、性别、民族、出生年月、常住户口所在地住址、公民身份号码、本人相片、证件的有效期和签发机关。公民身份证号码是每个公民唯一的、终身不变的身份代码,有公安机关按照公民身份号码国家标准编制。身份证是我国目前唯一的法定个人身份证件,将来要注意妥善保管好自己的身份证,不要随意借给他人使用。【设计意图:给学生渗透法制教育,让他们意识到身份证的重要性,要妥善保管好身份证,不能轻易的借给别人。】5、教师提问:在生活中哪些地方会用到居民身份证?学生回答。【设计意图:让学生体会数学与生活的紧密联系。】

  • 人教部编版道德与法制六年级上册感受生活中的法律说课稿

    学生阅读教材第4页正文的文本,结合课前搜集到的纪律、道德与法律关系的相关资料,先在小组内讨论:你认为违反法律的后果和违反学校纪律的后果是一样的吗?再小组之间进行辩论,教师相机引导。板书:法律与纪律、道德等社会规范不同。设计意图:引导学生理解法律与纪律、道德等社会规范不同。环节三:课堂小结,内化提升学生谈一谈学习本节课的收获,教师相机引导。设计意图:梳理总结本节课的主要内容,体验收获与成功的喜悦,内化提升认识与情感。环节四:布置作业,课外延伸生活中,在行使权利的同时,履行好我们的义务。设计意图:将课堂所学延伸到学生的日常生活中,有利于落实行为实践。六、板书设计为了突出重点,让学生整体上感知本节课的主要内容,我将以思维导图的形式设计板书:在黑板中上方的中间位置是课题《感受生活中的法律》,下面是:法律是什么;学生说到的权利和义务;法律与纪律、道德等社会规范不同。

  • 人教部编版道德与法制六年级上册公民的基本权利和义务说课稿

    三是:装修不应该打扰邻居的正常休息。如果你是事件中的受害方,你会如何处理这件事情?全班汇报交流,教师相机引导,板书:权利不是绝对的,是有界限的。设计意图:引导学生体会权利行使的界限。环节三:课堂小结,内化提升学生谈一谈学习本节课的收获,教师相机引导。设计意图:梳理总结,体验收获与成功的喜悦,内化提升学生的认识与情感。环节四:布置作业,课外延伸课后,以古老而优美的汉字为主题办一期手抄报。设计意图:将课堂所学延伸到学生的日常生活中,有利于落实行为实践。六、板书设计为了突出重点,让学生整体上感知本节课的主要内容,我将以思维导图的形式设计板书:在黑板中上方的中间位置是课题《公民的基本权利》,下面是:宪法是公民权利的保障书;法律保障公民基本权利的落实;权利不是绝对的,是有界限的。

  • 人教部编版道德与法制六年级上册国家机构有哪些说课稿

    活动三:政府机关、监察机关和司法机关的职权 首先,学生阅读教材第46 页的图文资料,结合课前搜集到的有关人民政府的资料, 教师引导学生说一说行政机关有哪些?其职权是 什么?板书:行政管理职权,提供公共服务。然后,学生从教材第 47 页中找出监察机关和司法机关职权的相 关信息,并了解司法机关徽章的含义。板书:监察权,审判权,监督 权。最后,结合活动园中三名同学对法院可以审理哪些类型案件的争 议,先小组内讨论交流, 你认为法院可以审理哪些类型的案件?再全 班汇报交流,教师相机引导。设计意图:引导学生了解政府机关、 监察机关和司法机关的职权,知道人民法院可以审理哪些类型的案件。环节三:课堂小结,内化提升 学生谈一谈学习本节课的收获,教师相机引导。 设计意图:梳理总结,体验收获与成功的喜悦,内化提升学生的认识与情感。环节四:布置作业,课外延伸课后,以国家机关的职权为主题办一期手抄报。

  • 人教部编版道德与法制六年级上册权力受到制约和监督说课稿

    板书:国家机关及其工作人员行使职权造成损 失的,要依法承担赔偿责任。设计意图:引导学生懂得国家机关及其工作人员违法行使职权,侵犯公民合法权益,造成损害的,国家要依法承担赔偿责任。 环节环节三:课堂小结,内化提升学生谈一谈学习本节课的收获,教师相机引导。设计意图:梳理总结,体验收获与成功的喜悦,内化提升学生的认识与情感。环节四:布置作业,课外延伸 课后,以权力违法必追责为主题写一篇日记。 设计意图:将课堂所学延伸到学生的日常生活中,有利于落实行为实践。六、板书设计 为了突出重点,让学生整体上感知本节课的主要内容,我将以思维导图的形式设计板书: 在黑板中上方的中间位置是课题《权力违法 必追责》,下面是:权力违法要依法纠正;中华人民共和国行政诉讼法;国家机关及其工作人员行使职权造成损失的,要依法承担赔偿责任。

  • 人教部编版道德与法制六年级上册宪法是根本法说课稿

    9、过渡语 :宪法来之不易 ,我们更应该好好学 习宪法。为了 帮 助人们更好地学 习、理解宪法 ,每年的国家宪法日 都有活动主题 。请 你查一查 ,说说它们的含义 。10、活动 园:五年宪法日主题 。11、资料搜查员:请你查阅一下相关的资料 ,了解更多 与国家宪 法日相关的知识 ,并分享一下你 的所得。12、分享归纳 :宪法日小知识。13、小贴士 :一些 国家的宪法日。14 、大开眼界:世界各国宪法日是怎么过的?15、观察与思考 :从对国外宪法日及宪法日 活动的了解 当 中,你 感受到了 什么?16 、小感悟 :每个国家都 十分重视本国的宪法,通 过开展各式各 样的宪法日活动 ,帮助人们树 立宪法意识,从而形成崇尚宪法 的良好 社会氛围 ,维护宪法权威 。而我们也更应该在日常 生活 中学习宪法、 加强对宪法 的了解和认识。17、展示图片 :除 了宪法日意外,其他时间各中小 学也开展许多 活动 ,学 习宪法。

  • 人教部编版道德与法制六年级上册知法守法,依法维权说课稿

    活动三:依法维权靠证据结合课前搜集到的有关依法维权时收集证据的资料,教师引导学生讨论教材第92 页活动园中的三个情景中,权利人可以收集的证据是什么?板书:依法维权要靠证据。设计意图是:引导学生懂得依法维权要靠证据。 环节三:课堂小结,内化提升 学生谈一谈学习本节课的收获,教师相机引导。设计意图:梳理总结,体验收获与成功的喜悦,内化提升学生的认识与情感。 环节四:布置作业,课外延伸 生活中,在自己权利受到侵害时,用学到的方法依法维权。设计意图:将课堂所学延伸到学生的日常生活中,有利于落实行为实践。 六、板书设计为了突出重点,让学生整体上感知本节课的主要内容,我将以思维导图的形式设计板书: 在黑板中上方的中间位置是课题《知法守法,依法维权》 ,下面是:未成年人依法维权的各种途径;在维护自身权利时,要学会保护自己;依法维权要靠证据。

  • 人教版新目标初中英语八年级上册Can you come to my party说课稿5篇

    二、教学设计与构思根据以上对教材的分析,同时针对学生学习外语存在一定困难的实际情况及学生的年龄特点,首先给学生营造一个温馨愉悦的氛围,创设一个接近学生生活的语言环境,激发学生的学习兴趣,让学生乐于参于以后的活动中,而且每一个环节都配有相应的动画或亲切的画面,让学生在看、听和感知中接受知识,陶冶情操。最后用清晰明了的方式总结知识要点,便于学生巩固复习。在评价学习上,采用多元化评价,尊重差异,富于感性。布置作业时,分两部分,由浅入深,照顾全体学生。三、教学文法通过五步教学法,精讲巧红,由浅入深,以学生为主体,开展师生双边活动。四、教学手段使用现代化教学手段,多媒体辅助教学贯穿整个教学过程,增加直观性和趣味性,提高教学效果。

  • 直线与圆的位置关系教学设计人教A版高中数学选择性必修第一册

    切线方程的求法1.求过圆上一点P(x0,y0)的圆的切线方程:先求切点与圆心连线的斜率k,则由垂直关系,切线斜率为-1/k,由点斜式方程可求得切线方程.若k=0或斜率不存在,则由图形可直接得切线方程为y=b或x=a.2.求过圆外一点P(x0,y0)的圆的切线时,常用几何方法求解设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0,由圆心到直线的距离等于半径,可求得k,进而切线方程即可求出.但要注意,此时的切线有两条,若求出的k值只有一个时,则另一条切线的斜率一定不存在,可通过数形结合求出.例3 求直线l:3x+y-6=0被圆C:x2+y2-2y-4=0截得的弦长.思路分析:解法一求出直线与圆的交点坐标,解法二利用弦长公式,解法三利用几何法作出直角三角形,三种解法都可求得弦长.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交点A(1,3),B(2,0),故弦AB的长为|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.设两交点A,B的坐标分别为A(x1,y1),B(x2,y2),则由根与系数的关系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的长为√10.解法三圆C:x2+y2-2y-4=0可化为x2+(y-1)2=5,其圆心坐标(0,1),半径r=√5,点(0,1)到直线l的距离为d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦长为("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦长|AB|=√10.

  • 空间向量基本定理教学设计人教A版高中数学选择性必修第一册

    反思感悟用基底表示空间向量的解题策略1.空间中,任一向量都可以用一个基底表示,且只要基底确定,则表示形式是唯一的.2.用基底表示空间向量时,一般要结合图形,运用向量加法、减法的平行四边形法则、三角形法则,以及数乘向量的运算法则,逐步向基向量过渡,直至全部用基向量表示.3.在空间几何体中选择基底时,通常选取公共起点最集中的向量或关系最明确的向量作为基底,例如,在正方体、长方体、平行六面体、四面体中,一般选用从同一顶点出发的三条棱所对应的向量作为基底.例2.在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别是DD1,BD的中点,点G在棱CD上,且CG=1/3 CD(1)证明:EF⊥B1C;(2)求EF与C1G所成角的余弦值.思路分析选择一个空间基底,将(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)证明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?与(C_1 G) ?夹角的余弦值即可.(1)证明:设(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,则{i,j,k}构成空间的一个正交基底.

  • 点到直线的距离公式教学设计人教A版高中数学选择性必修第一册

    4.已知△ABC三个顶点坐标A(-1,3),B(-3,0),C(1,2),求△ABC的面积S.【解析】由直线方程的两点式得直线BC的方程为 = ,即x-2y+3=0,由两点间距离公式得|BC|= ,点A到BC的距离为d,即为BC边上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面积为4.5.已知直线l经过点P(0,2),且A(1,1),B(-3,1)两点到直线l的距离相等,求直线l的方程.解:(方法一)∵点A(1,1)与B(-3,1)到y轴的距离不相等,∴直线l的斜率存在,设为k.又直线l在y轴上的截距为2,则直线l的方程为y=kx+2,即kx-y+2=0.由点A(1,1)与B(-3,1)到直线l的距离相等,∴直线l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)当直线l过线段AB的中点时,A,B两点到直线l的距离相等.∵AB的中点是(-1,1),又直线l过点P(0,2),∴直线l的方程是x-y+2=0.当直线l∥AB时,A,B两点到直线l的距离相等.∵直线AB的斜率为0,∴直线l的斜率为0,∴直线l的方程为y=2.综上所述,满足条件的直线l的方程是x-y+2=0或y=2.

  • 两点间的距离公式教学设计人教A版高中数学选择性必修第一册

    一、情境导学在一条笔直的公路同侧有两个大型小区,现在计划在公路上某处建一个公交站点C,以方便居住在两个小区住户的出行.如何选址能使站点到两个小区的距离之和最小?二、探究新知问题1.在数轴上已知两点A、B,如何求A、B两点间的距离?提示:|AB|=|xA-xB|.问题2:在平面直角坐标系中能否利用数轴上两点间的距离求出任意两点间距离?探究.当x1≠x2,y1≠y2时,|P1P2|=?请简单说明理由.提示:可以,构造直角三角形利用勾股定理求解.答案:如图,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即两点P1(x1,y1),P2(x2,y2)间的距离|P1P2|=?x2-x1?2+?y2-y1?2.你还能用其它方法证明这个公式吗?2.两点间距离公式的理解(1)此公式与两点的先后顺序无关,也就是说公式也可写成|P1P2|=?x2-x1?2+?y2-y1?2.(2)当直线P1P2平行于x轴时,|P1P2|=|x2-x1|.当直线P1P2平行于y轴时,|P1P2|=|y2-y1|.

  • 两条平行线间的距离教学设计人教A版高中数学选择性必修第一册

    一、情境导学前面我们已经得到了两点间的距离公式,点到直线的距离公式,关于平面上的距离问题,两条直线间的距离也是值得研究的。思考1:立定跳远测量的什么距离?A.两平行线的距离 B.点到直线的距离 C. 点到点的距离二、探究新知思考2:已知两条平行直线l_1,l_2的方程,如何求l_1 〖与l〗_2间的距离?根据两条平行直线间距离的含义,在直线l_1上取任一点P(x_0,y_0 ),,点P(x_0,y_0 )到直线l_2的距离就是直线l_1与直线l_2间的距离,这样求两条平行线间的距离就转化为求点到直线的距离。两条平行直线间的距离1. 定义:夹在两平行线间的__________的长.公垂线段2. 图示: 3. 求法:转化为点到直线的距离.1.原点到直线x+2y-5=0的距离是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.选D.]

  • 圆的标准方程教学设计人教A版高中数学选择性必修第一册

    (1)几何法它是利用图形的几何性质,如圆的性质等,直接求出圆的圆心和半径,代入圆的标准方程,从而得到圆的标准方程.(2)待定系数法由三个独立条件得到三个方程,解方程组以得到圆的标准方程中三个参数,从而确定圆的标准方程.它是求圆的方程最常用的方法,一般步骤是:①设——设所求圆的方程为(x-a)2+(y-b)2=r2;②列——由已知条件,建立关于a,b,r的方程组;③解——解方程组,求出a,b,r;④代——将a,b,r代入所设方程,得所求圆的方程.跟踪训练1.已知△ABC的三个顶点坐标分别为A(0,5),B(1,-2),C(-3,-4),求该三角形的外接圆的方程.[解] 法一:设所求圆的标准方程为(x-a)2+(y-b)2=r2.因为A(0,5),B(1,-2),C(-3,-4)都在圆上,所以它们的坐标都满足圆的标准方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圆的标准方程是(x+3)2+(y-1)2=25.

  • 圆的一般方程教学设计人教A版高中数学选择性必修第一册

    情境导学前面我们已讨论了圆的标准方程为(x-a)2+(y-b)2=r2,现将其展开可得:x2+y2-2ax-2bx+a2+b2-r2=0.可见,任何一个圆的方程都可以变形x2+y2+Dx+Ey+F=0的形式.请大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲线是不是圆?下面我们来探讨这一方面的问题.探究新知例如,对于方程x^2+y^2-2x-4y+6=0,对其进行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因为任意一点的坐标 (x,y) 都不满足这个方程,所以这个方程不表示任何图形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通过恒等变换为圆的标准方程,这表明形如x2+y2+Dx+Ey+F=0的方程不一定是圆的方程.一、圆的一般方程(1)当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)为圆心,1/2 √(D^2+E^2 "-" 4F)为半径的圆,将方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)当D2+E2-4F=0时,方程x2+y2+Dx+Ey+F=0,表示一个点(-D/2,-E/2)(3)当D2+E2-4F0);

上一页123...727374757677787980818283下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!