4.有8种不同的菜种,任选4种种在不同土质的4块地里,有 种不同的种法. 解析:将4块不同土质的地看作4个不同的位置,从8种不同的菜种中任选4种种在4块不同土质的地里,则本题即为从8个不同元素中任选4个元素的排列问题,所以不同的种法共有A_8^4 =8×7×6×5=1 680(种).答案:1 6805.用1、2、3、4、5、6、7这7个数字组成没有重复数字的四位数.(1)这些四位数中偶数有多少个?能被5整除的有多少个?(2)这些四位数中大于6 500的有多少个?解:(1)偶数的个位数只能是2、4、6,有A_3^1种排法,其他位上有A_6^3种排法,由分步乘法计数原理,知共有四位偶数A_3^1·A_6^3=360(个);能被5整除的数个位必须是5,故有A_6^3=120(个).(2)最高位上是7时大于6 500,有A_6^3种,最高位上是6时,百位上只能是7或5,故有2×A_5^2种.由分类加法计数原理知,这些四位数中大于6 500的共有A_6^3+2×A_5^2=160(个).
探究新知问题1:已知100件产品中有8件次品,现从中采用有放回方式随机抽取4件.设抽取的4件产品中次品数为X,求随机变量X的分布列.(1):采用有放回抽样,随机变量X服从二项分布吗?采用有放回抽样,则每次抽到次品的概率为0.08,且各次抽样的结果相互独立,此时X服从二项分布,即X~B(4,0.08).(2):如果采用不放回抽样,抽取的4件产品中次品数X服从二项分布吗?若不服从,那么X的分布列是什么?不服从,根据古典概型求X的分布列.解:从100件产品中任取4件有 C_100^4 种不同的取法,从100件产品中任取4件,次品数X可能取0,1,2,3,4.恰有k件次品的取法有C_8^k C_92^(4-k)种.一般地,假设一批产品共有N件,其中有M件次品.从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为P(X=k)=CkM Cn-kN-M CnN ,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M},则称随机变量X服从超几何分布.
二项式定理形式上的特点(1)二项展开式有n+1项,而不是n项.(2)二项式系数都是C_n^k(k=0,1,2,…,n),它与二项展开式中某一项的系数不一定相等.(3)二项展开式中的二项式系数的和等于2n,即C_n^0+C_n^1+C_n^2+…+C_n^n=2n.(4)在排列方式上,按照字母a的降幂排列,从第一项起,次数由n次逐项减少1次直到0次,同时字母b按升幂排列,次数由0次逐项增加1次直到n次.1.判断(正确的打“√”,错误的打“×”)(1)(a+b)n展开式中共有n项. ( )(2)在公式中,交换a,b的顺序对各项没有影响. ( )(3)Cknan-kbk是(a+b)n展开式中的第k项. ( )(4)(a-b)n与(a+b)n的二项式展开式的二项式系数相同. ( )[解析] (1)× 因为(a+b)n展开式中共有n+1项.(2)× 因为二项式的第k+1项Cknan-kbk和(b+a)n的展开式的第k+1项Cknbn-kak是不同的,其中的a,b是不能随便交换的.(3)× 因为Cknan-kbk是(a+b)n展开式中的第k+1项.(4)√ 因为(a-b)n与(a+b)n的二项式展开式的二项式系数都是Crn.[答案] (1)× (2)× (3)× (4)√
2.某小组有20名射手,其中1,2,3,4级射手分别为2,6,9,3名.又若选1,2,3,4级射手参加比赛,则在比赛中射中目标的概率分别为0.85,0.64,0.45,0.32,今随机选一人参加比赛,则该小组比赛中射中目标的概率为________. 【解析】设B表示“该小组比赛中射中目标”,Ai(i=1,2,3,4)表示“选i级射手参加比赛”,则P(B)= P(Ai)P(B|Ai)= 2/20×0.85+ 6/20 ×0.64+ 9/20×0.45+ 3/20×0.32=0.527 5.答案:0.527 53.两批相同的产品各有12件和10件,每批产品中各有1件废品,现在先从第1批产品中任取1件放入第2批中,然后从第2批中任取1件,则取到废品的概率为________. 【解析】设A表示“取到废品”,B表示“从第1批中取到废品”,有P(B)= 112,P(A|B)= 2/11 ,P(A| )= 1/11所以P(A)=P(B)P(A|B)+P( )P(A| )4.有一批同一型号的产品,已知其中由一厂生产的占 30%, 二厂生产的占 50% , 三厂生产的占 20%, 又知这三个厂的产品次品率分别为2% , 1%, 1%,问从这批产品中任取一件是次品的概率是多少?
(2)方法一:第一次取到一件不合格品,还剩下99件产品,其中有4件不合格品,95件合格品,于是第二次又取到不合格品的概率为4/99,由于这是一个条件概率,所以P(B|A)=4/99.方法二:根据条件概率的定义,先求出事件A,B同时发生的概率P(AB)=(C_5^2)/(C_100^2 )=1/495,所以P(B|A)=(P"(" AB")" )/(P"(" A")" )=(1/495)/(5/100)=4/99.6.在某次考试中,要从20道题中随机地抽出6道题,若考生至少答对其中的4道题即可通过;若至少答对其中5道题就获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.解:设事件A为“该考生6道题全答对”,事件B为“该考生答对了其中5道题而另一道答错”,事件C为“该考生答对了其中4道题而另2道题答错”,事件D为“该考生在这次考试中通过”,事件E为“该考生在这次考试中获得优秀”,则A,B,C两两互斥,且D=A∪B∪C,E=A∪B,由古典概型的概率公式及加法公式可知P(D)=P(A∪B∪C)=P(A)+P(B)+P(C)=(C_10^6)/(C_20^6 )+(C_10^5 C_10^1)/(C_20^6 )+(C_10^4 C_10^2)/(C_20^6 )=(12" " 180)/(C_20^6 ),P(E|D)=P(A∪B|D)=P(A|D)+P(B|D)=(P"(" A")" )/(P"(" D")" )+(P"(" B")" )/(P"(" D")" )=(210/(C_20^6 ))/((12" " 180)/(C_20^6 ))+((2" " 520)/(C_20^6 ))/((12" " 180)/(C_20^6 ))=13/58,即所求概率为13/58.
3.某县农民月均收入服从N(500,202)的正态分布,则此县农民月均收入在500元到520元间人数的百分比约为 . 解析:因为月收入服从正态分布N(500,202),所以μ=500,σ=20,μ-σ=480,μ+σ=520.所以月均收入在[480,520]范围内的概率为0.683.由图像的对称性可知,此县农民月均收入在500到520元间人数的百分比约为34.15%.答案:34.15%4.某种零件的尺寸ξ(单位:cm)服从正态分布N(3,12),则不属于区间[1,5]这个尺寸范围的零件数约占总数的 . 解析:零件尺寸属于区间[μ-2σ,μ+2σ],即零件尺寸在[1,5]内取值的概率约为95.4%,故零件尺寸不属于区间[1,5]内的概率为1-95.4%=4.6%.答案:4.6%5. 设在一次数学考试中,某班学生的分数X~N(110,202),且知试卷满分150分,这个班的学生共54人,求这个班在这次数学考试中及格(即90分及90分以上)的人数和130分以上的人数.解:μ=110,σ=20,P(X≥90)=P(X-110≥-20)=P(X-μ≥-σ),∵P(X-μσ)≈2P(X-μ130)=P(X-110>20)=P(X-μ>σ),∴P(X-μσ)≈0.683+2P(X-μ>σ)=1,∴P(X-μ>σ)=0.158 5,即P(X>130)=0.158 5.∴54×0.158 5≈9(人),即130分以上的人数约为9人.
解析:因为减法和除法运算中交换两个数的位置对计算结果有影响,所以属于组合的有2个.答案:B2.若A_n^2=3C_(n"-" 1)^2,则n的值为( )A.4 B.5 C.6 D.7 解析:因为A_n^2=3C_(n"-" 1)^2,所以n(n-1)=(3"(" n"-" 1")(" n"-" 2")" )/2,解得n=6.故选C.答案:C 3.若集合A={a1,a2,a3,a4,a5},则集合A的子集中含有4个元素的子集共有 个. 解析:满足要求的子集中含有4个元素,由集合中元素的无序性,知其子集个数为C_5^4=5.答案:54.平面内有12个点,其中有4个点共线,此外再无任何3点共线,以这些点为顶点,可得多少个不同的三角形?解:(方法一)我们把从共线的4个点中取点的多少作为分类的标准:第1类,共线的4个点中有2个点作为三角形的顶点,共有C_4^2·C_8^1=48(个)不同的三角形;第2类,共线的4个点中有1个点作为三角形的顶点,共有C_4^1·C_8^2=112(个)不同的三角形;第3类,共线的4个点中没有点作为三角形的顶点,共有C_8^3=56(个)不同的三角形.由分类加法计数原理,不同的三角形共有48+112+56=216(个).(方法二 间接法)C_12^3-C_4^3=220-4=216(个).
知识和技能 1.了解人类活动对生物圈影响的几个方面的实例。 2.掌握环境污染的产生及危害。 3.举例说明人类对生物圈中资源的合理利用。 过程与方法 1.能初步学会收集资料,养成良好的学习习惯,能够运用所学知识、技能分析和解决一些身边的生物学问题的能力。 2.培养学生初步具有近一步获取课本以外的生物学信息的能力。 情感、态度与价值观 1.让学生认识到环境保护的重要性,能够以科学的态度去认识生命世界,认同人类活动对生物圈的影响,形成环境保护意识,并使这种意识转变成真正的行动,培养学生保护环境的意识,增强爱国主义思想1.认同人类活动对生物圈的影响,形成环境保护意识 2.做到从实际行动出发保护环境1.采取让学生收集资料,整理资料,解疑
活动目标:1、了解植物的生长过程,知道各种植物的种子是不同的,并能区分。 2、让幼儿了解植物生长离不开阳光、空气和水。 3、培养幼儿主动探索的习惯和体会成功的喜悦,激起下一次探索的欲望。 活动准备:1、事先搜集有关植物生长的资料和图片。 2、准备各种植物的种子若干。 3、花盆、纸笔若干。 活动过程: 一、让幼儿说说植物是怎么来的?请哦跃然把自己的想法说出来。 二、幼儿讨论:植物为什么会长大?怎样才会长大? 三、幼儿进行小实验:植物无根和有根实验。请幼儿看看实验中哪种植物没有死,了解根的作用。 四、幼儿做种植实验:了解植物的生长过程。
准备 本市(县)、中国地图各1张。地球仪两个。一朵小红花。每个幼儿备一张自己的照片(不超过2寸)。 过程 1、我的家在哪里 教师出示本市(县)地图。并提问:“谁能从这张图上找到我们的幼儿园?”当幼儿找到时,请用小红花贴到幼儿园的位置上。再请幼儿继续寻找“我的家在哪儿?”小朋友分组到地图前找自己的家,找到自己家的小朋友,可把自己的照片贴到上面去。经过大家一番寻找和粘贴,一幅生动、亲切的“我的家”的地图制成了。 2、我们的祖国--中国真大 教师出示地球仪,并提问:“谁能找到中国在什么地方?”“我国周围有哪些国家?”此时,教师出示世界地图,引导幼儿在世界地图上和其他国家比较,最后得出“我们中国在世界上是个很大的国家”的结论。
2、喜欢与同伴交流自己的生活经验,愿意在集体面前大胆说话。活动准备:《汽车城》活动课件一个活动指导:一、情境导入,引发兴趣孩子们和老师一起进行音乐游戏“开汽车”,创设“红绿灯”的游戏情境。二、游戏汽车城,了解车辆给生活带来的便捷1、汽车城里有些什么车?2、互动游戏——各种各样的车(一)(1)猜一猜,这是一辆什么车? (2)卡车可以帮助我们干什么呢? (3)情景:秋天到了,果园里的苹果都熟了,我们该怎么运回幼儿园呢?小结:原来卡车可以帮助我们运输各种各样的货物,真方便。
【活动准备】1、昆虫标本、模型。2、昆虫图片、头饰。3、昆虫、非昆虫、益虫、害虫、小动物、除害、不除害等字的卡片。【活动过程】1、自由参观昆虫标本和模型。 老师:今天,老师给小朋友门带来了很多的昆虫标本和模型,我们一块来看一看吧。老师和孩子一块儿边看边说出他们的名字及特征。 小结:昆虫有六条腿、两对翅膀。身体分为头、胸、腹三部分,腹部一节一节的。2、参观完后,回到小椅子上坐好: 森林里传出一个消息:森林里要成立一支昆虫保安大队,希望昆虫前来报名。小动物们听到这个消息,纷纷前来报名。3、教师出示“报名者”的卡片(有顺序的摆放): (1)每出示一种小动物图片,幼儿说出它的名字。 报名者中有昆虫也有鸽子、小兔、马子、小鹿等小动物,若孩子能在老师摆图片的过程中看出点什么?教师可引导孩子说:是呀,小兔不是昆虫,可它特别想来当保安,所以就想蒙混过关,她既然报上名了,我们就让它出来露一露面,等一下,我们看看还有谁也是想蒙混过关的,我们一块儿把它找出来好吗?
一、开始部分:数数游戏 1.手指指棋盘点数1-5.(注意点数常规) 2.接数练习.(1-50) 二、基本部分:按群计数1-50 1.讲述故事吸引幼儿. 师:今天是对对国五十年的国庆大典,全国上下都很高兴.国王邀请50位客人参加国庆大典,对对国有个规定,进出人员必须两个两个的,要不就要受到惩罚,所以守成门卫兵都很小心,今天更不能出错,出错会掉脑袋的,我们一起来帮他们数.
活动准备: 1、大棋谱两副,黑白棋子若干。 2、红、黄、绿、紫队标志一份,每队准备一副棋谱,若干黑白子。 3、数字卡片“6”以内加减算式若干。 活动过程: 一、分队推选小队长 “分成四队,每队4个孩子,自己选出小队长” 二、黑白棋对抗赛 1、规则:每队选2名小队员先后参加比赛,第一名队员用黑子,第二名队员用白子,要求黑子和白子合起来我给你的数。 2、幼儿比赛,教师总结比赛情况。
2、让幼儿在尝试、比较、讨论中了解舌头的三大作用。 3、引导幼儿认识在生活中该怎样保护自己的舌头。 4、发展幼儿的味觉感官,培养探索自身奥秘的兴趣。活动准备: 1、每人镜子一面,调味品一份(包括酸、甜、苦、辣、咸),吸管一根。 2、电脑、投影仪、多媒体课件。活动过程:一、导入,引出主题 1、教师和幼儿一起玩舌发出声音。 2、提问:是谁帮助我们发出这些有趣的声音?二、认识舌头各部分的名称及部位 1、师:对了,是我们的舌头,你有没有仔细的观察过它?今天老师为每个小朋友准备了一面镜子,请你仔细地观察一下自己的舌头,看看它的上面、下面有什么。 2、幼儿边观察边发言。 3、教师把自己的手当作舌头演示,幼儿认识各部分名称:舌头后面连着喉咙的部分叫“舌根”,舌根的前面部分叫“舌体”,舌体的最前面叫“舌尖”,舌体的上面叫“舌背”,舌背上有舌乳头、舌苔,舌体的下面叫“舌腹”,舌腹上有舌系带、血管和突起。
2、 学习初步的分类方法,体验动手操作的乐趣。 二、 活动准备: 各种竹制品:筷子、簸箕、菜板、扁担、竹篓、竹篮、牙签等,各种竹制品上都贴有标签;“货架”三只,上面贴有标签。 四、活动过程:1、 导入: 师:“前几天,小朋友们出去找春天发现了一个秘密,那就是小竹笋长大后就是非常有用的竹子,今天我们就一起来研究一下竹子的本领。”
活动目标: 1、认识“>”和“<”,理解不等式的含义,理解大小的相对性。。 2、学习把不等式转变为等式。 3、培养幼儿思维的灵活性和可逆性,锻炼幼儿运用数学知识解决实际 问题的能力。活动准备: 1、7只蜜蜂,5只蝴蝶的图片。 2、4朵红花、六朵黄花的图片。 3、数字卡片“7”、“5”、“4”、“6”以及“>”、“<”、“=”卡片若干。 4、数字头饰两套,小猴子头饰若干。 5、数字小兔图一张,有关数字卡若干。 6、数字卡10张(装入猫头包内),铃鼓一个,磁带、录音机等。活动过程: 一、导入课题:认识“>”和“<” 1、问:“小朋友,现在是什么季节?”(春季)“春天来了,蜜蜂蝴蝶飞呀飞呀,飞到我们幼儿园里来了,大家看一下,飞来了几只蜜蜂?几只蝴蝶?”教师展示蜜蜂和蝴蝶的图片,幼儿说出数量,教师贴上相应的数字卡。 问:“蜜蜂和蝴蝶比,谁多?谁少?”“那么,7和5相比,哪个数字大?哪个数字小?” 师:“我们可以在7和5之间放一个符号,让人一看就知道哪边的数字大,哪边的数字小。我们以前学过‘=’号,能放‘=’号吗?”启发引导幼儿,引出“>”,重点引导幼儿观察大于号像张着嘴巴对着大数笑,大于号表示前边的数比后边的数大,初步理解大于号的含义,说出“7”大于“5”。
(一)安全事故处理小组主要职责 1、接受上级主管旅游安全事故应急救援指挥部的领导,负责贯彻执行旅游安全法律法规、学习市旅游局等相关安全管理部门关于旅游安全的相关政策、决定;制定紧急事故、伤亡的应急处理预案; 2、组织本旅行社应急救援及处理工作; 3、做好事故后稳定社会秩序和伤亡人员的善后及安抚工作; 4、总结经验教训,并执行责任追究制。
(1)小朋友都带来了小时侯穿的衣服,去试一试现在还穿得下吗? (幼儿试穿小时侯的衣物,感觉身体上的长大。)(2)幼儿说身体的变化。 三、出示长颈鹿测量尺,感受身高的变化,1幼儿和长颈鹿比身高,利用图卡记录比较身高的变化。 老师这里有一头长颈鹿,它也想和小朋友比比身高,谁愿意和长劲鹿比一比呢? 2、小结:我们的头、身体、手、脚等各个地方都长大了,说明我们真的长大了。 四. 讨论自己怎样长高长大的,感受爸爸妈妈的辛苦。
2、教师:这两个小动物它们今天还带来了一个故事哦,请小朋友们来听一听这个好听的故事吧!教师讲述故事内容。3、教师提问:教师:小公鸡和小鸭子在做什么呢?当鸭子啄不到虫子的时候是谁来帮他啄的呢?小公鸡是怎么样帮助小鸭子的呢?小公鸡不会游泳,是谁来救他的?小鸭子又是怎么样救小公鸡的呢?教师小结:小鸡和小鸭子它们是一对好朋友,他们互相关心、互相帮助。