提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

部编版语文八年级下册《小石潭记》教案

  • 2024年度XXX区药械化监管上半年工作总结及下一步工作

    (二)创新监管方式,实现监检协作为扎实推进药械安全专项整治,建立健全药械长效监管机制,一是开展零售药店药械经营质量风险评估工作,组建评估队伍,开展评估工作;二是开展医疗器械经营企业质量安全风险评估工作,通过第三方风险隐患排查机制,督促医疗器械经营企业认真落实质量安全管理责任,提升医疗器械经营质量安全。三、下一步工作计划1.持续做好药品医疗器械质量安全监管和风险监测工作,加强麻醉药品、精神药品质量监管;2.持续推进零售药店药械经营质量风险评估工作;3.持续开展医疗器械分类分级等专项检查,开展一类医疗器械生产企业专项检查。完成药品及医疗器械监管系统的填报等工作,确保按照要求完成工作任务;4.按计划推进《XXXXXX新区生物医药产业发展分析及政策研究》,完善药品安全委员会工作机制;5.开展医疗器械宣传周和安全用药月系列宣传活动。

  • 高中物理人教版必修一《弹力》说课稿

    二、学情分析:学生目前对形变和弹力有一定的感性认识但是不够深入;知道支持力、压力都是弹力,但是不能够概括产生的原因。理性思维还没有达到一定的层次,要想理解弹力这一抽象概念还有一定困难。因此我采取引导、启发的教学方式。

  • 【高教版】中职数学拓展模块:2.3《抛物线》教学设计

    一、教学目标(一)知识教育点使学生掌握抛物线的定义、抛物线的标准方程及其推导过程.(二)能力训练点要求学生进一步熟练掌握解析几何的基本思想方法,提高分析、对比、概括、转化等方面的能力.(三)学科渗透点通过一个简单实验引入抛物线的定义,可以对学生进行理论来源于实践的辩证唯物主义思想教育.二、教材分析1.重点:抛物线的定义和标准方程.2.难点:抛物线的标准方程的推导.三、活动设计提问、回顾、实验、讲解、板演、归纳表格.四、教学过程(一)导出课题我们已学习了圆、椭圆、双曲线三种圆锥曲线.今天我们将学习第四种圆锥曲线——抛物线,以及它的定义和标准方程.课题是“抛物线及其标准方程”.首先,利用篮球和排球的运动轨迹给出抛物线的实际意义,再利用太阳灶和抛物线型的桥说明抛物线的实际用途。

  • 【高教版】中职数学拓展模块:3.5《正态分布》教学设计

    教学目的:理解并熟练掌握正态分布的密度函数、分布函数、数字特征及线性性质。教学重点:正态分布的密度函数和分布函数。教学难点:正态分布密度曲线的特征及正态分布的线性性质。教学学时:2学时教学过程:第四章 正态分布§4.1 正态分布的概率密度与分布函数在讨论正态分布之前,我们先计算积分。首先计算。因为(利用极坐标计算)所以。记,则利用定积分的换元法有因为,所以它可以作为某个连续随机变量的概率密度函数。定义 如果连续随机变量的概率密度为则称随机变量服从正态分布,记作,其中是正态分布的参数。正态分布也称为高斯(Gauss)分布。

  • 【高教版】中职数学拓展模块:2.2《双曲线》教学设计

    教学准备 1. 教学目标 知识与技能掌握双曲线的定义,掌握双曲线的四种标准方程形式及其对应的焦点、准线.过程与方法掌握对双曲线标准方程的推导,进一步理解求曲线方程的方法——坐标法.通过本节课的学习,提高学生观察、类比、分析和概括的能力.情感、态度与价值观通过本节的学习,体验研究解析几何的基本思想,感受圆锥曲线在刻画现实和解决实际问题中的作用,进一步体会数形结合的思想.2. 教学重点/难点 教学重点双曲线的定义及焦点及双曲线标准方程.教学难点在推导双曲线标准方程的过程中,如何选择适当的坐标系. 3. 教学用具 多媒体4. 标签

  • 【高教版】中职数学拓展模块:2.1《椭圆》优秀教学设计

    本人所教的两个班级学生普遍存在着数学科基础知识较为薄弱,计算能力较差,综合能力不强,对数学学习有一定的困难。在课堂上的主体作用的体现不是太充分,但是他们能意识到自己的不足,对数学课的学习兴趣高,积极性强。 学生在学习交往上表现为个别化学习,课堂上较为依赖老师的引导。学生的群体性小组交流能力与协同讨论学习的能力不强,对学习资源和知识信息的获取、加工、处理和综合的能力较低。在教学中尽量分析细致,减少跨度较大的环节,对重要的推导过程采用板书方式逐步进行,力求让绝大多数学生接受。 1.理解椭圆标准方程的推导;掌握椭圆的标准方程;会根据条件求椭圆的标准方程,会根据椭圆的标准方程求焦点坐标. 2.通过椭圆图形的研究和标准方程的讨论,使学生掌握椭圆的几何性质,能正确地画出椭圆的图形,并了解椭圆的一些实际应用。 1.让学生经历椭圆标准方程的推导过程,进一步掌握求曲线方程的一般方法,体会数形结合等数学思想;培养学生运用类比、联想等方法提出问题. 2.培养学生运用数形结合的思想,进一步掌握利用方程研究曲线的基本方法,通过与椭圆几何性质的对比来提高学生联想、类比、归纳的能力,解决一些实际问题。 1.通过具体的情境感知研究椭圆标准方程的必要性和实际意义;体会数学的对称美、简洁美,培养学生的审美情趣,形成学习数学知识的积极态度. 2.进一步理解并掌握代数知识在解析几何运算中的作用,提高解方程组和计算能力,通过“数”研究“形”,说明“数”与“形”存在矛盾的统一体中,通过“数”的变化研究“形”的本质。帮助学生建立勇于探索创新的精神和克服困难的信心。

  • 人教版高中数学选修3排列与排列数教学设计

    4.有8种不同的菜种,任选4种种在不同土质的4块地里,有 种不同的种法. 解析:将4块不同土质的地看作4个不同的位置,从8种不同的菜种中任选4种种在4块不同土质的地里,则本题即为从8个不同元素中任选4个元素的排列问题,所以不同的种法共有A_8^4 =8×7×6×5=1 680(种).答案:1 6805.用1、2、3、4、5、6、7这7个数字组成没有重复数字的四位数.(1)这些四位数中偶数有多少个?能被5整除的有多少个?(2)这些四位数中大于6 500的有多少个?解:(1)偶数的个位数只能是2、4、6,有A_3^1种排法,其他位上有A_6^3种排法,由分步乘法计数原理,知共有四位偶数A_3^1·A_6^3=360(个);能被5整除的数个位必须是5,故有A_6^3=120(个).(2)最高位上是7时大于6 500,有A_6^3种,最高位上是6时,百位上只能是7或5,故有2×A_5^2种.由分类加法计数原理知,这些四位数中大于6 500的共有A_6^3+2×A_5^2=160(个).

  • 人教版高中数学选修3超几何分布教学设计

    探究新知问题1:已知100件产品中有8件次品,现从中采用有放回方式随机抽取4件.设抽取的4件产品中次品数为X,求随机变量X的分布列.(1):采用有放回抽样,随机变量X服从二项分布吗?采用有放回抽样,则每次抽到次品的概率为0.08,且各次抽样的结果相互独立,此时X服从二项分布,即X~B(4,0.08).(2):如果采用不放回抽样,抽取的4件产品中次品数X服从二项分布吗?若不服从,那么X的分布列是什么?不服从,根据古典概型求X的分布列.解:从100件产品中任取4件有 C_100^4 种不同的取法,从100件产品中任取4件,次品数X可能取0,1,2,3,4.恰有k件次品的取法有C_8^k C_92^(4-k)种.一般地,假设一批产品共有N件,其中有M件次品.从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为P(X=k)=CkM Cn-kN-M CnN ,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M},则称随机变量X服从超几何分布.

  • 人教版高中数学选修3二项式定理教学设计

    二项式定理形式上的特点(1)二项展开式有n+1项,而不是n项.(2)二项式系数都是C_n^k(k=0,1,2,…,n),它与二项展开式中某一项的系数不一定相等.(3)二项展开式中的二项式系数的和等于2n,即C_n^0+C_n^1+C_n^2+…+C_n^n=2n.(4)在排列方式上,按照字母a的降幂排列,从第一项起,次数由n次逐项减少1次直到0次,同时字母b按升幂排列,次数由0次逐项增加1次直到n次.1.判断(正确的打“√”,错误的打“×”)(1)(a+b)n展开式中共有n项. ( )(2)在公式中,交换a,b的顺序对各项没有影响. ( )(3)Cknan-kbk是(a+b)n展开式中的第k项. ( )(4)(a-b)n与(a+b)n的二项式展开式的二项式系数相同. ( )[解析] (1)× 因为(a+b)n展开式中共有n+1项.(2)× 因为二项式的第k+1项Cknan-kbk和(b+a)n的展开式的第k+1项Cknbn-kak是不同的,其中的a,b是不能随便交换的.(3)× 因为Cknan-kbk是(a+b)n展开式中的第k+1项.(4)√ 因为(a-b)n与(a+b)n的二项式展开式的二项式系数都是Crn.[答案] (1)× (2)× (3)× (4)√

  • 人教版高中数学选修3全概率公式教学设计

    2.某小组有20名射手,其中1,2,3,4级射手分别为2,6,9,3名.又若选1,2,3,4级射手参加比赛,则在比赛中射中目标的概率分别为0.85,0.64,0.45,0.32,今随机选一人参加比赛,则该小组比赛中射中目标的概率为________. 【解析】设B表示“该小组比赛中射中目标”,Ai(i=1,2,3,4)表示“选i级射手参加比赛”,则P(B)= P(Ai)P(B|Ai)= 2/20×0.85+ 6/20 ×0.64+ 9/20×0.45+ 3/20×0.32=0.527 5.答案:0.527 53.两批相同的产品各有12件和10件,每批产品中各有1件废品,现在先从第1批产品中任取1件放入第2批中,然后从第2批中任取1件,则取到废品的概率为________. 【解析】设A表示“取到废品”,B表示“从第1批中取到废品”,有P(B)= 112,P(A|B)= 2/11 ,P(A| )= 1/11所以P(A)=P(B)P(A|B)+P( )P(A| )4.有一批同一型号的产品,已知其中由一厂生产的占 30%, 二厂生产的占 50% , 三厂生产的占 20%, 又知这三个厂的产品次品率分别为2% , 1%, 1%,问从这批产品中任取一件是次品的概率是多少?

  • 人教版高中数学选修3条件概率教学设计

    (2)方法一:第一次取到一件不合格品,还剩下99件产品,其中有4件不合格品,95件合格品,于是第二次又取到不合格品的概率为4/99,由于这是一个条件概率,所以P(B|A)=4/99.方法二:根据条件概率的定义,先求出事件A,B同时发生的概率P(AB)=(C_5^2)/(C_100^2 )=1/495,所以P(B|A)=(P"(" AB")" )/(P"(" A")" )=(1/495)/(5/100)=4/99.6.在某次考试中,要从20道题中随机地抽出6道题,若考生至少答对其中的4道题即可通过;若至少答对其中5道题就获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.解:设事件A为“该考生6道题全答对”,事件B为“该考生答对了其中5道题而另一道答错”,事件C为“该考生答对了其中4道题而另2道题答错”,事件D为“该考生在这次考试中通过”,事件E为“该考生在这次考试中获得优秀”,则A,B,C两两互斥,且D=A∪B∪C,E=A∪B,由古典概型的概率公式及加法公式可知P(D)=P(A∪B∪C)=P(A)+P(B)+P(C)=(C_10^6)/(C_20^6 )+(C_10^5 C_10^1)/(C_20^6 )+(C_10^4 C_10^2)/(C_20^6 )=(12" " 180)/(C_20^6 ),P(E|D)=P(A∪B|D)=P(A|D)+P(B|D)=(P"(" A")" )/(P"(" D")" )+(P"(" B")" )/(P"(" D")" )=(210/(C_20^6 ))/((12" " 180)/(C_20^6 ))+((2" " 520)/(C_20^6 ))/((12" " 180)/(C_20^6 ))=13/58,即所求概率为13/58.

  • 人教版高中数学选修3正态分布教学设计

    3.某县农民月均收入服从N(500,202)的正态分布,则此县农民月均收入在500元到520元间人数的百分比约为 . 解析:因为月收入服从正态分布N(500,202),所以μ=500,σ=20,μ-σ=480,μ+σ=520.所以月均收入在[480,520]范围内的概率为0.683.由图像的对称性可知,此县农民月均收入在500到520元间人数的百分比约为34.15%.答案:34.15%4.某种零件的尺寸ξ(单位:cm)服从正态分布N(3,12),则不属于区间[1,5]这个尺寸范围的零件数约占总数的 . 解析:零件尺寸属于区间[μ-2σ,μ+2σ],即零件尺寸在[1,5]内取值的概率约为95.4%,故零件尺寸不属于区间[1,5]内的概率为1-95.4%=4.6%.答案:4.6%5. 设在一次数学考试中,某班学生的分数X~N(110,202),且知试卷满分150分,这个班的学生共54人,求这个班在这次数学考试中及格(即90分及90分以上)的人数和130分以上的人数.解:μ=110,σ=20,P(X≥90)=P(X-110≥-20)=P(X-μ≥-σ),∵P(X-μσ)≈2P(X-μ130)=P(X-110>20)=P(X-μ>σ),∴P(X-μσ)≈0.683+2P(X-μ>σ)=1,∴P(X-μ>σ)=0.158 5,即P(X>130)=0.158 5.∴54×0.158 5≈9(人),即130分以上的人数约为9人.

  • 人教版高中数学选修3组合与组合数教学设计

    解析:因为减法和除法运算中交换两个数的位置对计算结果有影响,所以属于组合的有2个.答案:B2.若A_n^2=3C_(n"-" 1)^2,则n的值为( )A.4 B.5 C.6 D.7 解析:因为A_n^2=3C_(n"-" 1)^2,所以n(n-1)=(3"(" n"-" 1")(" n"-" 2")" )/2,解得n=6.故选C.答案:C 3.若集合A={a1,a2,a3,a4,a5},则集合A的子集中含有4个元素的子集共有 个. 解析:满足要求的子集中含有4个元素,由集合中元素的无序性,知其子集个数为C_5^4=5.答案:54.平面内有12个点,其中有4个点共线,此外再无任何3点共线,以这些点为顶点,可得多少个不同的三角形?解:(方法一)我们把从共线的4个点中取点的多少作为分类的标准:第1类,共线的4个点中有2个点作为三角形的顶点,共有C_4^2·C_8^1=48(个)不同的三角形;第2类,共线的4个点中有1个点作为三角形的顶点,共有C_4^1·C_8^2=112(个)不同的三角形;第3类,共线的4个点中没有点作为三角形的顶点,共有C_8^3=56(个)不同的三角形.由分类加法计数原理,不同的三角形共有48+112+56=216(个).(方法二 间接法)C_12^3-C_4^3=220-4=216(个).

  • 山东省聊城市2019年中考历史试题(解析版)

    31.阅读下列材料,回答问题。材料一 农,天下之大本也,民所恃以生也。而民或不务本而事末,故生不遂。——汉文帝材料二 世儒不察,以工商为末。妄议抑之。夫工商圣王之所欲来,商又使其愿出于途者,盖皆本也。——黄宗羲(1)材料一反映了中国古代哪一重要思想?据此,西汉统治者采取了哪些措施?(2)材料二中黄宗羲提出了什么主张?应如何评价这一主张?

  • 内蒙古赤峰市2019年中考历史试题(解析版)

    (1)材料一中,谁曾经走过古丝绸之路?材料二 海上丝绸之路把丝绸远销海外,还把中国古代的发明创造,如(四大发明) 、 、 、印刷术、瓷器、医学、中草药等传布到世界各地。——陈炎《海上丝绸之路与中外文化交流》(2)请将材料二中三处画“_______” 的部分在答题卡上补充完整。材料三 明朝中期,随着日本国内社会动荡加剧,特别是由于明朝国力减弱,海防松懈,倭寇与中国海盗奸商等相互勾结,对中国沿海的武装抢劫日益猖獗。……沿海各地遭到重大破坏,时称“倭患”。——中国历史七年级下册 (3)根据材料三和所学知识,分析明朝中期出现“倭患”的原因是什么?倭寇猖獗之时,谁临危受命南下抗倭?(4)1684年,为了加强对东南地区的管辖,清政府在台湾设置了什么机构?

  • 内蒙古赤峰市2019年中考历史试题(原卷版)

    19.中国古代一直实行和平开放的对外政策。但是,从明朝中期开始,对外环境发生了变化。阅读下列材料回答问题。材料一 (见下图两个人物) (1)材料一中,谁曾经走过古丝绸之路?材料二 海上丝绸之路把丝绸远销海外,还把中国古代的发明创造,如(四大发明) 、 、 、印刷术、瓷器、医学、中草药等传布到世界各地。——陈炎《海上丝绸之路与中外文化交流》(2)请将材料二中三处画“_______” 的部分在答题卡上补充完整。材料三 明朝中期,随着日本国内社会动荡加剧,特别是由于明朝国力减弱,海防松懈,倭寇与中国海盗奸商等相互勾结,对中国沿海的武装抢劫日益猖獗。……沿海各地遭到重大破坏,时称“倭患”。——中国历史七年级下册 (3)根据材料三和所学知识,分析明朝中期出现“倭患”的原因是什么?倭寇猖獗之时,谁临危受命南下抗倭?

  • 2023年教务处工作总结及2024年工作计划

    4.加强师风师德建设,增强教师的责任心和使命感。四、下学期工作计划1.加强教学质量的管理力度,进一步扭转教师的教育观念,进一步加强师德师风建设,使教师能“爱岗敬业,教书育人,为人师表”做四有好老师。2.积极联系兄弟学校联考,横向比较了解自身不足,采取针对性措施以期做得更好。3.扎实推进三教改革,加强课程建设,采用多种培训方法,对不同层次的教师进行多元培训,提高整体教师的业务素质,更新教师理念,从“教教材”到“用教材”的转变;以“教师为中心”向以“学生为中心”的转变;从“教育观”到“学习观”的转变;由“传授型”教师向“科研型”教师的转变。4.加强教师队伍建设,有计划地做好青年教师培养工作。继续做好“青蓝工程”师徒结对工作,各位师傅要关爱徒弟,在“备课、听课、上课、作业”等各个环节上把好关,使之能迅速站稳讲台。继续组织好青年教师教学基本功比赛,让青年教师脱颖而出。

  • 关于高中政教处下学期精选工作计划两篇

    1、树立一种意识:以生为本即以学生为主体。  2、抓住两条主线:抓学生的养成教育,抓班级常规管理。  3、突出三个重点:通过课堂教育熏陶学生良好的品德。通过常规管理促成学生行为习惯养成教育,通过丰富的活动培养学生多种能力。

  • (安全教育日)国旗下讲话:让安全永系心中

    1996年2月,我国教育部、公安部等联合发出通知,决定将每年三月最后一个周的星期一确定为全国中小学生“安全教育日”。至今,全国中小学“安全教育日”经迎来了她的第19个生日。相信同学们都知道最近发生的两起安全事件------3月1日晚上9点多,昆明火车站发生暴力恐怖袭击事件,一伙暴徒持械冲进昆明火车站广场、售票厅,见人就砍。造成29人遇难、143人受伤。XX年3月8日凌晨,马来西亚航空公司一架载有239人的飞机在万米高空突然消失,至今杳无消息。(机上还有154名我国同胞。)紧张的搜救工作正在进行中。同学们,以上两起最新发生的安全事件告诉我们:安全问题关系到千家万户,关系到我们每一个人,安全事故随时都可能发生在我们身边。

  • (三月二十六日)国旗下讲话:安全教育日

    我是来自高二六班的xx,非常荣幸能在国旗下代表上周值周班高二六班演讲。今天我演讲的主题是:安全——教育的保障。大家知道吗,三月二十六日是“全国中小学生安全宣传教育日”。 据权威数据显示,我国现有18岁以下未成年人亿人,平均每年意外伤害人数约为4000万人次,医疗费用亿元,平均每年约有万名中小学生非正常伤亡。为推动中小学安全教育工作,降低青少年伤亡事故的发生率,保证青少年健康成长。1996年由国家教育部、公安部等七部委联合发文,确定每年三月份最后一周的星期一作为全国中小学生“安全教育日”,每年确定一个主题。 如果说学生是祖国的花朵,安全就恰如花朵下的土壤,是花朵生长的保障。我的班主任常常教导我说:“一定要注意安全,父母把自己养这么大不容易。”直到我把脚歪到之前,我还不曾意识到安全的重要性。

上一页123...437438439440441442443444445446447448下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!