9.例二:如图,AB∩α=B,A?α, ?a.直线AB与a具有怎样的位置关系?为什么?解:直线AB与a是异面直线。理由如下:若直线AB与a不是异面直线,则它们相交或平行,设它们确定的平面为β,则B∈β, 由于经过点B与直线a有且仅有一个平面α,因此平面平面α与β重合,从而 , 进而A∈α,这与A?α矛盾。所以直线AB与a是异面直线。补充说明:例二告诉我们一种判断异面直线的方法:与一个平面相交的直线和这个平面内不经过交点的直线是异面直线。10. 例3 已知a,b,c是三条直线,如果a与b是异面直线,b与c是异面直线,那么a与c有怎样的位置关系?并画图说明.解: 直线a与直线c的位置关系可以是平行、相交、异面.如图(1)(2)(3).总结:判定两条直线是异面直线的方法(1)定义法:由定义判断两条直线不可能在同一平面内.
一、情境导学在一条笔直的公路同侧有两个大型小区,现在计划在公路上某处建一个公交站点C,以方便居住在两个小区住户的出行.如何选址能使站点到两个小区的距离之和最小?二、探究新知问题1.在数轴上已知两点A、B,如何求A、B两点间的距离?提示:|AB|=|xA-xB|.问题2:在平面直角坐标系中能否利用数轴上两点间的距离求出任意两点间距离?探究.当x1≠x2,y1≠y2时,|P1P2|=?请简单说明理由.提示:可以,构造直角三角形利用勾股定理求解.答案:如图,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即两点P1(x1,y1),P2(x2,y2)间的距离|P1P2|=?x2-x1?2+?y2-y1?2.你还能用其它方法证明这个公式吗?2.两点间距离公式的理解(1)此公式与两点的先后顺序无关,也就是说公式也可写成|P1P2|=?x2-x1?2+?y2-y1?2.(2)当直线P1P2平行于x轴时,|P1P2|=|x2-x1|.当直线P1P2平行于y轴时,|P1P2|=|y2-y1|.
1.直线2x+y+8=0和直线x+y-1=0的交点坐标是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程组{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交点坐标是(-9,10).答案:B 2.直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,则k的值为( )A.-24 B.24 C.6 D.± 6解析:∵直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,可设交点坐标为(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故选A.答案:A 3.已知直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,若l1⊥l2,则点P的坐标为 . 解析:∵直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,联立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴点P的坐标为(3,3).答案:(3,3) 4.求证:不论m为何值,直线(m-1)x+(2m-1)y=m-5都通过一定点. 证明:将原方程按m的降幂排列,整理得(x+2y-1)m-(x+y-5)=0,此式对于m的任意实数值都成立,根据恒等式的要求,m的一次项系数与常数项均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤
本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.5.1节《函数零点与方程的解》,由于学生已经学过一元二次方程与二次函数的关系,本节课的内容就是在此基础上的推广。从而建立一般的函数的零点概念,进一步理解零点判定定理及其应用。培养和发展学生数学直观、数学抽象、逻辑推理和数学建模的核心素养。1、了解函数(结合二次函数)零点的概念;2、理 解函数零点与方程的根以及函数图象与x轴交点的关系,掌握零点存在性定理的运用;3、在认识函数零点的过程中,使学生学会认识事物的特殊性与一般性之间的关系,培养数学数形结合及函数思想; a.数学抽象:函数零点的概念;b.逻辑推理:零点判定定理;c.数学运算:运用零点判定定理确定零点范围;d.直观想象:运用图形判定零点;e.数学建模:运用函数的观点方程的根;
本章通过学习用二分法求方程近似解的的方法,使学生体会函数与方程之间的关系,通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用,进一步认识到函数是描述客观世界变化规律的基本数学模型,能初步运用函数思想解决一些生活中的简单问题。1.了解函数的零点、方程的根与图象交点三者之间的联系.2.会借助零点存在性定理判断函数的零点所在的大致区间.3.能借助函数单调性及图象判断零点个数.数学学科素养1.数学抽象:函数零点的概念;2.逻辑推理:借助图像判断零点个数;3.数学运算:求函数零点或零点所在区间;4.数学建模:通过由抽象到具体,由具体到一般的思想总结函数零点概念.重点:零点的概念,及零点与方程根的联系;难点:零点的概念的形成.
4.已知△ABC三个顶点坐标A(-1,3),B(-3,0),C(1,2),求△ABC的面积S.【解析】由直线方程的两点式得直线BC的方程为 = ,即x-2y+3=0,由两点间距离公式得|BC|= ,点A到BC的距离为d,即为BC边上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面积为4.5.已知直线l经过点P(0,2),且A(1,1),B(-3,1)两点到直线l的距离相等,求直线l的方程.解:(方法一)∵点A(1,1)与B(-3,1)到y轴的距离不相等,∴直线l的斜率存在,设为k.又直线l在y轴上的截距为2,则直线l的方程为y=kx+2,即kx-y+2=0.由点A(1,1)与B(-3,1)到直线l的距离相等,∴直线l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)当直线l过线段AB的中点时,A,B两点到直线l的距离相等.∵AB的中点是(-1,1),又直线l过点P(0,2),∴直线l的方程是x-y+2=0.当直线l∥AB时,A,B两点到直线l的距离相等.∵直线AB的斜率为0,∴直线l的斜率为0,∴直线l的方程为y=2.综上所述,满足条件的直线l的方程是x-y+2=0或y=2.
【答案】B [由直线方程知直线斜率为3,令x=0可得在y轴上的截距为y=-3.故选B.]3.已知直线l1过点P(2,1)且与直线l2:y=x+1垂直,则l1的点斜式方程为________.【答案】y-1=-(x-2) [直线l2的斜率k2=1,故l1的斜率为-1,所以l1的点斜式方程为y-1=-(x-2).]4.已知两条直线y=ax-2和y=(2-a)x+1互相平行,则a=________. 【答案】1 [由题意得a=2-a,解得a=1.]5.无论k取何值,直线y-2=k(x+1)所过的定点是 . 【答案】(-1,2)6.直线l经过点P(3,4),它的倾斜角是直线y=3x+3的倾斜角的2倍,求直线l的点斜式方程.【答案】直线y=3x+3的斜率k=3,则其倾斜角α=60°,所以直线l的倾斜角为120°.以直线l的斜率为k′=tan 120°=-3.所以直线l的点斜式方程为y-4=-3(x-3).
解析:①过原点时,直线方程为y=-34x.②直线不过原点时,可设其方程为xa+ya=1,∴4a+-3a=1,∴a=1.∴直线方程为x+y-1=0.所以这样的直线有2条,选B.答案:B4.若点P(3,m)在过点A(2,-1),B(-3,4)的直线上,则m= . 解析:由两点式方程得,过A,B两点的直线方程为(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又点P(3,m)在直线AB上,所以3+m-1=0,得m=-2.答案:-2 5.直线ax+by=1(ab≠0)与两坐标轴围成的三角形的面积是 . 解析:直线在两坐标轴上的截距分别为1/a 与 1/b,所以直线与坐标轴围成的三角形面积为1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三个顶点A(0,4),B(-2,6),C(-8,0).(1)求三角形三边所在直线的方程;(2)求AC边上的垂直平分线的方程.解析(1)直线AB的方程为y-46-4=x-0-2-0,整理得x+y-4=0;直线BC的方程为y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直线AC的方程为x-8+y4=1,整理得x-2y+8=0.(2)线段AC的中点为D(-4,2),直线AC的斜率为12,则AC边上的垂直平分线的斜率为-2,所以AC边的垂直平分线的方程为y-2=-2(x+4),整理得2x+y+6=0.
(四)理顺园区管理体制。一是争取省编办经开区“三定”方案尽快批准实施;二是理顺经开区与市直部门和区的关系,尽快明确经开区的职责范围;三是健全经开区的管理服务机构;四是明确经开区四至界限,编制总体发展规划、控制性详细规划、产业发展规划。(五)强化规范监管服务。一是严格规划管理。严把项目“一书三证”的审查、审批关,对建筑容积率、绿地率、建筑外观等实行包抓责任制监管,确保符合园区规划要求;严格要求建设单位办理质监、消防等手续,履行工程报建、工程监理、工程质量委托、施工图审查等基本建设程序,提高规划审批质量。二是加强土地管理。采取收购置换、收取土地闲置费等措施,加大对圈而不建土地的回购、清收力度,盘活园区沉积土地;对新入园项目,严格论证审查投资额度及用地面积,强化用地合同管理,实行分批供地,防止产生新的闲置土地;做好未开发土地的规划储备,通过压缩清理、规划延伸,拓展园区空间,实现增区扩园目标。
乡土人才培养方面:加快培养农业生产经营人才、农村二三产业发展人才、乡村公共服务人才、乡村治理人才和农业农村科技人才,依托科技特派员、乡村振兴专家服务团队和上海市闵行区、东北大学、西南大学等优质人才资源,加强本土人才培育。加快致富“头雁”培养,以村(社区)“两委”班子成员、农村D员、小微企业主、农民专业合作社负责人为重点,在全县具有代表性的重点领域选树技术帮带方面、用工扶持方面、消费带动方面的10名致富头雁。持续推进“万名人才兴万村”行动和“高层次人才挂联帮扶”工程,鼓励专业人才服务乡村,吸引各类人才在乡村振兴中建功立业。四、2023年工作亮点亮点一:“基层D建+D员志愿服务”打造乡村治理新模式。镇一直以来坚持以“基层D建+D员志愿服务”为工作模式,依托镇新时代文明实践所(站),以“五组一联”工作方法为抓手,紧紧围绕“产业兴旺、生态宜居、乡风文明、治理有效、生活富裕”24字总要求,深入贯彻落实乡村振兴战略,充分发挥基层D组织的政治优势、组织优势和战斗堡垒作用,主动担当、开拓创新,将D建活力变为发展动力,全力以赴做好做实乡村振兴这篇大文章。
二、下半年工作思路围绕“打造浙中增长极建设未来新中心”战略目标,聚焦平安护航亚运主题主线,下半年重点打好五大攻坚战。(一)坚决打好产业升级攻坚战。围绕数字经济“一号发展工程”,重点推进新材料、汽车等细分行业数字化改造,力争实现省级“未来工厂”零的突破。深入开展“腾笼换鸟”攻坚行动,9月底前完成低效用地整治1000亩的年度目标,配合新区完成自贸区土地连片整治工作。加强乡镇科技创新,推进单项冠军、专精特新“小巨人”等优秀企业培养,保质保量完成新增省科技型中小企业28家、国家高新技术企业5家、规上企业研发机构24家的任务目标。全心全意优环境,利用XX商会等资源,建设企业困难帮扶平台,努力做到“妈妈式”服务和“保镖式”保护。
(四)坚决打好除险保安攻坚战。健全完善网格化治理模式,注重发挥基层网格员、村“两委”干部、联村干部的作用,构建覆盖全域、反应迅速、处置有效的基层网格治理格局。强化社会综合治理,持续迭代升级“141”基层社会治理模式,深化“大综合一体化”行政执法改革,滚动开展安全生产和消防安全系列专项活动,将重点人员牢牢稳控在基层,确保亚运会平稳举办。持续深化“法亮调解室”“一村一警”等社会治理品牌,及时总结提炼全处面上基层治理的经验做法,最终以治理品牌进一步提升治理效果。(五)坚决打好民生改善攻坚战。深入推进扩中提底,加快村级“一事一议”项目建设和农民自建房审批,深化推进“共富工坊”,确保今年22个行政村全部完成经营性收入**万以上。
材料二这场运动的宗旨是提高产量、防止富裕农民重新冒头、争取更大程度的农业专业化,以及加速实现社会主义改造的进程……到1956年年底,约96%的农户正式成为合作社社员。 ——摘自徐中约著《中国近代史》材料三家庭联产承包责任制是我国农村集体经济的主要实现形式,主要生产资料仍归集体所有,在分配方面仍实行按劳分配原则……既发挥了集体统一经营的优越性,又调动了农民生产枳极性,是适应我国农业特点和农村生产力发展水平以及管理水平的一种较好的经济形式。 ——搞自《复兴之路》(中)(1)据材料一,图7中“改革”依据的是哪一部法律?(2分)
材料二 美国国会通过了《全国工业复兴法》等法案,要求企业按部门就产品的产量、价格等制定公平竞争法规,以防止盲目竞争引起生产过剩。法案还规定了最低工资和最高工时的标准。——摘自《历史——经济成长历程》(岳麓书社)(2)根据材料二,指出美国国会要求企业按部门制定公平竞争法规的目的。材料三 20世纪30年代中期,有人在纽约做了一次民意测验,结果发现,罗斯福总统最爱欢迎,他的后面才是上帝,而且上帝票数还远远落后于罗斯福。——摘编自《历史——经济成长历程》(岳麓书社)(3)根据材料三并结合所学知识,分析罗斯福总统最受欢迎的原因。
材料一科技的进步不断为经济发展开拓广阔的前景。自工业革命以来,新的行业不断涌现,催生了许多新的职业,如火车司机、汽车司机、飞行员、轮船修理工、网络工程师和航天工程师等。材料二它是魔幻的第七大洲,在这里,每个人只需敲几下键盘就可以了解到世界上所有的知识。——英特尔公司副总裁肖恩·马洛克
材料二这场运动的宗旨是提高产量、防止富裕农民重新冒头、争取更大程度的农业专业化,以及加速实现社会主义改造的进程……到1956年年底,约96%的农户正式成为合作社社员。 ——摘自徐中约著《中国近代史》
②许多植物具有“慧眼”识光的能力,它们自知日出东山,夕阳西下,从而把握了自己开花和落叶的时间,如牵牛花天刚亮就开花,向日葵始终朝阳。植物不仅能“看见”光,还能感觉出光照的“数量”和质量,某些北方良种引种到南方,颗粒不收,就是因为植物的“眼睛”对异地的光线不习惯。植物的“眼睛”对光色也非常敏感,不同植物可识别不同光线,以促进自身的生长与发育。植物的“眼睛”原来是存在于细胞中的一种专门色素——视觉色素,植物凭借这种“眼睛”,从根到叶尖形成完整而灵敏的感光系统,对光产生既定反应,如花开、花合、叶子向左向右、变换根的生长方向等。 ③植物界中不仅有靠根吃“素”的植物,而且还有靠“口”吃“荤”的植物,食虫植物(也称食肉植物)便是这类植物。这些植物的叶子变得非常奇特,它们形成各种形状的“口”,有的像瓶子,有的像小口袋或蚌壳,能分泌消化昆虫的黏液,还能分泌香味,许多昆虫因为闻到香味,而跌入了陷阱之中!植物靠“口”捕食蚊蝇类的小虫子,有时也能“吃”掉像蜻蜒一样的大昆虫。它们分布于世界各地,种类有500多种,最著名的有瓶子草、猪笼草、狸藻等。
那是纽约州的午夜,她刚听完一场音乐会回来,从宿舍里打电话给我:“今天晚上,我们学校来了一个图瓦共和国的合唱团,他们唱的歌,我从前也听过,你每次去蒙古,带回来的录音带和CD里面都有。可是那个时候什么感觉也没有,为什么今天晚上他们在台上一开始唱,我的眼泪就一直不停地掉下来?好奇怪啊!我周围的同学都是西方人,他们也喜欢这个合唱团,直说歌声真美,可是,为什么我会觉得那歌声除了美以外,还有一种好像只有我才能了解的孤独和寂寞,觉得离他们好近、好亲。整个晚上,我都在想,原来妈妈的眼泪就是这样流下来的,原来这一切根本是由不得自己的!”然后,她就说:“妈妈,带我去蒙古。”
13终于,一切都齐备了,我们便在最最豪华的筵席上坐下来。有烤火腿和圣诞节吃的各种各样的好东西。吃饭的时候,母亲不得不屡次三番地站起来,去上菜,收盘,再坐下来吃;后来父亲注意到这种情况,便说,她完全不必这样忙来忙去,他要她歇会儿,于是他自己便站起身到碗橱里去拿水果。 14这顿饭吃了好长时间,真是有趣极了。吃完饭,我们大伙儿争着帮忙擦桌子,洗碗碟,可是母亲说她情愿亲自来做这些事,我们只好让她去做了,因为这一次我们也总得迁就她才行。 15一切收拾完毕,已经很晚了。睡觉之前我们全都去吻过母亲。她说,这是她有生以来过得最最快活的一天。我看见她眼里含着泪水。总之,我们大家都感觉到,我们所做的一切得到了最大的报偿。
麦克今年35岁,却在监狱里度过了整整8年,想起这事,他就恨父亲老麦克。老麦克很有钱,但是个守财奴,对自己唯一的儿子也很吝啬。麦克忍受不了那种艰苦的生活,便去做了小偷,几年下来竟成了远近闻名的“神偷”。一次,老麦克在儿子的抽屉里发现了几条钻石项链,便毫不犹豫地报告了警察局,于是麦克就锒铛入狱了。好不容易熬到刑满释放,回家一看,老麦克死了,他那数亿美元的财产也不翼而飞。就在他一筹莫展的时候,却意外地从晚报上发现了一则招聘启事:本人欲招聘小偷一名,要求:男性,35岁左右,偷盗技术高超,曾因偷盗罪被判刑入狱。有意应聘者请与约翰逊先生联系……麦克看了这则启事,不觉眼前一亮,心里想:四条要求,自己条条符合。他也知道约翰逊是全城有名的大富翁,可他为啥要招聘小偷呢?