雨后天空的彩虹、河上架起的拱桥等都会形成一条曲线.问题1:这些曲线能否用函数关系式表示?问题2:如何画出这样的函数图象?二、合作探究探究点:二次函数y=x2和y=-x2的图象与性质【类型一】 二次函数y=x2和y=-x2的图象的画法及特点在同一平面直角坐标系中,画出下列函数的图象:(1)y=x2;(2)y=-x2.根据图象分别说出抛物线(1)(2)的对称轴、顶点坐标、开口方向及最高(低)点坐标.解析:利用列表、描点、连线的方法作出两个函数的图象即可.解:列表如下:x y) -2 -1 0 1 2y=x2 4 1 0 1 4 y=-x2 -4 -1 0 -1 -4 描点、连线可得图象如下:(1)抛物线y=x2的对称轴为y轴,顶点坐标为(0,0),开口方向向上,最低点坐标为(0,0);(2)抛物线y=-x2的对称轴为y轴,顶点坐标为(0,0),开口方向向下,最高点坐标为(0,0).方法总结:画抛物线y=x2和y=-x2的图象时,还可以根据它的对称性,先用描点法描出抛物线的一侧,再利用对称性画另一侧.
变式训练:见《学练优》本课时练习“课堂达标训练”第5题【类型二】 在同一坐标系中判断二次函数和一次函数的图象在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()解析:∵一次函数和二次函数都经过y轴上的点(0,c),∴两个函数图象交于y轴上的同一点,故B选项错误;当a>0时,二次函数的图象开口向上,一次函数的图象从左向右上升,故C选项错误;当a<0时,二次函数的图象开口向下,一次函数的图象从左向右下降,故A选项错误,D选项正确.故选D.方法总结:熟记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质(开口方向、对称轴、顶点坐标等)是解决问题的关键.变式训练:见《学练优》本课时练习“课后巩固提升” 第4题【类型三】 二次函数y=ax2+c的图象与三角形的综合
【教学目标】(一)教学知识点能够利用描点法作出函数 的图象,并根据图象认识和理解二次函数 的性质;比较两者的异同.(二)能力训练要求:经历探索二次函数 图象的作法和性质的过程,获得利用图象研究函数性质的经验.(三)情感态度与价值观:通过学生自己的探索活动,达到对抛物线自身特点的认识和对二次函数性质的理解. 【重、难点】重点 :会画y=ax2的图象,理解其性质。难点:描点法画y=ax2的图象,体会数与形的相互联系。 【导学流程】 一、自主预习(用时15分钟)1.创设教学情境我们在教学了正比例函数、一次函数、反比例函数的定义后,都借助图像研究了它们的性质.而上节课我们所学的二次函数的图象是什么呢?本节课我们将从最简单的二次函数y=x2入手去研究
第二章 合同内容及范围1.由乙方向甲方转让合同产品的设计、制造、销售、安装和维修使用的技术,合同产品的规格和技术参数详见本合同附件1。2.乙方负责向甲方提供合同产品全部有关技术和技术资料(以下简称资料),其具体内容和交付时间详见本合同附件2及附件3。3.乙方授与甲方在中国制造和销售合同产品的权利。前四台合同产品只在中国国内销售。在此以后甲方制造的合同产品可销往下列国家: ,如合同产品按政府间经济贸易协议规定销往其他国家或由中国承包商在中国购买,随承包工程出口,则不受上述规定的限制。4.在合同期间,如甲方需要,乙方有义务以优惠价格向甲方提供制造合同产品所需的部件及原材料,双方将通过协商另签合同。第一台及其后诸台合同产品的分工详见附件1。5.乙方负责图纸及资料的转化并在乙方工厂及其有关协作工厂培训甲方人员。乙方应尽最大努力使甲方人员掌握合同产品的技术(具体内容见本合同附件3)。6.乙方有义务派遣技术人员到甲方工厂进行技术服务(详见本合同附件4)。7.乙方同意向甲方提供所需的专用工具、夹具及设备和检测合同产品所需的技术资料(详见本合同附件2)。
兹经双方同意,甲方委托乙方在 加工标准磁罗经,一切所需的零件与原料由甲方提供,其条款如下:1.来料加工和来件装配的商品和数量: (1)商品名称--标准磁罗经; (2)数量--共计 台; 2.一切所需用的零件和原料由甲方提供,或由乙方在 或 购买,清单附于本合同内; 3.每种型号的加工费如下: (1)GLC-1型标准磁罗经: U.S.D(大写: 美元); (2)GLC-2型标准磁罗经: U.S.D(大写: 美元); (3)GLC-3型标准磁罗经: U.S.D(大写: 美元)。 4.加工所需的主要零件、消耗品及原料由甲方运至(某地) ,若有短少或破损,甲方应负责补充供应; 5.甲方应于成品交运前1个月,开立信用证或电汇全部加工费用及由乙方在 或 购买零配件、消耗品及原料费用;
6.乙方应在双方同意的时间内完成GLC-1型标准磁罗经的加工和交运,不得延迟,凡发生无法控制的和不可预见的情况例外; 7.零件及原料的损耗率: 加工时零件及原料损耗率为 %,其损耗率由甲方免费供应,如损耗率超过 %,应由乙方补充加工所需之零件和原料; 8.若甲方误运原料及零件,或因大意而将原料及零件超运,乙方应将超运部份退回,其费用由甲方承担,若遇有短缺,应由甲方补充; 9.甲方提供加工GLC-1型标准磁罗经的零件和原料,乙方应严格按规定的设计加工,不得变更; 10.技术服务: 甲方同意乙方随时提出派遣技术人员到 的要求,协助培训乙方的技术人员,并允许所派的技术人员留在乙方检验成品。为此,乙方同意支付每人月薪 美元,其他一切费用(包括来回旅费)概由甲方负责; 11.与本合同有关的一切进出口手续,应由乙方予以办理; 12.加工后的标准磁罗经,乙方应运交给甲方随时指定的国外买主;
本节课选自《普通高中课程标准实验教科书数学必修1本(A版)》第五章的5.5.1 两角和与差的正弦、余弦和正切公式。本节的主要内容是由两角差的余弦公式的推导,运用诱导公式、同角三角函数的基本关系和代数变形,得到其它的和差角公式。让学生感受数形结合及转化的思想方法。发展学生数学直观、数学抽象、逻辑推理、数学建模的核心素养。课程目标 学科素养1.了解两角差的余弦公式的推导过程.2.掌握由两角差的余弦公式推导出两角和的余弦公式及两角和与差的正弦、正切公式.3.熟悉两角和与差的正弦、余弦、正切公式的灵活运用,了解公式的正用、逆用以及角的变换的常用方法.4.通过正切函数图像与性质的探究,培养学生数形结合和类比的思想方法。 a.数学抽象:公式的推导;b.逻辑推理:公式之间的联系;c.数学运算:运用和差角角公式求值;d.直观想象:两角差的余弦公式的推导;e.数学建模:公式的灵活运用;
本节内容是三角恒等变形的基础,是正弦线、余弦线和诱导公式等知识的延伸,同时,它又是两角和、差、倍、半角等公式的“源头”。两角和与差的正弦、余弦、正切是本章的重要内容,对于三角变换、三角恒等式的证明和三角函数式的化简、求值等三角问题的解决有着重要的支撑作用。 课程目标1、能够推导出两角和与差的正弦、余弦、正切公式并能应用; 2、掌握二倍角公式及变形公式,能灵活运用二倍角公式解决有关的化简、求值、证明问题.数学学科素养1.数学抽象:两角和与差的正弦、余弦和正切公式; 2.逻辑推理: 运用公式解决基本三角函数式的化简、证明等问题;3.数学运算:运用公式解决基本三角函数式求值问题.4.数学建模:学生体会到一般与特殊,换元等数学思想在三角恒等变换中的作用。.
1、组织制定分公司的组织机构和岗位编制计划。按照今年年度分公司的年度经营计划目标,公司人力资源部在年初组织制定了分公司今年年度的组织机构和岗位编制计划,经分公司经理办公会讨论通过后上报总公司。在今年年度中后期,结合分公司需要针对组织架构进行了部分调整,5月初人事行政办公室拆分为总经理办公室和人力资源部,7月中旬成立总工办。2、人员合理优化,适度压缩基层操作员工数量。结合公司现状,将各部门编制进行梳理,总经理办公室于年底前撤消保洁岗位。3、组织分公司岗位空缺人员的招聘工作。今年年度人力资源部本着“谨慎招聘、满足需求”的原则,按照年初制定的岗位编制进行员工招聘。
2、认识整点、半点及的读法及记录方法。3、在活动中诱发幼儿形成遵守时间与爱惜时间的良好习惯。活动准备:1、教具:有关各种时钟的幻灯片;时钟一面,可活动钟面一只;表示7、8、9、10点钟的钟面各一只,时间记录卡各一张。2、学具:幼儿观察记录表每人一份,活动钟面每人一份;实物时钟4只。活动过程:一、调动已有经验,回忆相关知识。1、前段时间我们小朋友和老师一起做了有关时钟的调查,知道时钟有好多好多种。现在请你看看老师从网上下载的钟,看看你认识它吗?2、依次出示幻灯片,幼儿讲名称。3、刚才我们所见到的只是时钟家族的一部分,它可能还有其他的种类,我们以后再来探讨。4、上次我们已经认识过钟面,来告诉大家,最长的针叫(秒针),有点长的针叫(分针),最短的针叫时针。钟面上一共有多少个数字(12),最上面的是数字12,然后依次是1、2……11。请你好好回忆一下,时钟里的指针是朝哪一个方向走的?(1……12)对了,这样的方向就叫顺时针方向。
活动过程: 一、认识煤气灶、煤气包,了解煤气的用处 1、 出示煤气灶和煤气包,提问:这是什么?你们家使用煤气吗?你们家的煤气是从哪里来的?煤气有什么用? 2、 教师进行简单的小结:我们家用的煤气有两种,一种是管道煤气,一种是煤气包。 它们给我们带来了许多方便,能烧水、烧饭、烧菜┄┄ 二、观看录象,了解煤气的危险性。 1. 教师:煤气的用处很多,可是如果不正确的使用煤气,煤气也会给我们带来许多危害。
《普通高中语文课程标准》关于“表达与交流”方面学生应达到的目标有如下的表述:“学会多角度地观察生活,丰富生活经历和情感体验,对自然、社会和人生有自己的感受和思考”,“进一步提高记叙述、说明、描写、议论、抒情等基本表达能力”。观察、感受、思考是写好作文的必要的积累与条件,而用最恰当的语言与形式传达自己的所得则属于“技巧”方面的范畴。教材“表达与交流”的编选采用的“话题探讨—写法借鉴—写作练习”的体例,其优点是就某一话题训练某一方面的写作能力,能使教与学具有较强的操作性,目标更具体,也就是“既讲‘写什么’,又讲‘怎么写’”,能克服“纯技术性训练”;不足在于容易造成教与学上的“只见树木、不见森林”现象。要让学生确实形成能力,举一反三,老师的备课量非常之大,好在现在网络发达,必修1和必修2还配了教案(不知为什么必修3和必修4没有),总算应对过来,因此,我在此所讲的教学设计之类的,有许多不是我个人的,是别人的成果,特此声明。
1、图12.5“浦东新区的规划图”首先了解浦东新区的位置,浦东新区位于黄浦江东部,东临东海,北濒长江,面积广阔,地形平坦,和上海市繁华的外滩和南京路只有一江之隔;其次要了解城市规划的功能分区。2、图12.6“浦东新区图”图中可见已建成陆家嘴、张江、金桥、外高桥、孙桥等功能分区,理解浦东作为现代化城市新区的格局已基本形成。3、图12.8“浦东新区的产业结构图(1997年)”读此图应该明确,浦东新区国民经济的主要支柱是工业,第二产业占62.1%,比重最小的是第一产业,仅占0.8%,为充分发挥浦东新区的龙头作用,今后该区应继续把第二产业放在首要位置,成为上海市高新技术产业和现代工业的基地。【教学内容】一、浦东新区的开发条件和作用建设城市新区是上海市发展的必然选择,建设新城区首先要选择合适的区域。
高斯(Gauss,1777-1855),德国数学家,近代数学的奠基者之一. 他在天文学、大地测量学、磁学、光学等领域都做出过杰出贡献. 问题1:为什么1+100=2+99=…=50+51呢?这是巧合吗?试从数列角度给出解释.高斯的算法:(1+100)+(2+99)+…+(50+51)= 101×50=5050高斯的算法实际上解决了求等差数列:1,2,3,…,n,"… " 前100项的和问题.等差数列中,下标和相等的两项和相等.设 an=n,则 a1=1,a2=2,a3=3,…如果数列{an} 是等差数列,p,q,s,t∈N*,且 p+q=s+t,则 ap+aq=as+at 可得:a_1+a_100=a_2+a_99=?=a_50+a_51问题2: 你能用上述方法计算1+2+3+… +101吗?问题3: 你能计算1+2+3+… +n吗?需要对项数的奇偶进行分类讨论.当n为偶数时, S_n=(1+n)+[(2+(n-1)]+?+[(n/2+(n/2-1)]=(1+n)+(1+n)…+(1+n)=n/2 (1+n) =(n(1+n))/2当n为奇数数时, n-1为偶数
新知探究国际象棋起源于古代印度.相传国王要奖赏国际象棋的发明者,问他想要什么.发明者说:“请在棋盘的第1个格子里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放上4颗麦粒,依次类推,每个格子里放的麦粒都是前一个格子里放的麦粒数的2倍,直到第64个格子.请给我足够的麦粒以实现上述要求.”国王觉得这个要求不高,就欣然同意了.假定千粒麦粒的质量为40克,据查,2016--2017年度世界年度小麦产量约为7.5亿吨,根据以上数据,判断国王是否能实现他的诺言.问题1:每个格子里放的麦粒数可以构成一个数列,请判断分析这个数列是否是等比数列?并写出这个等比数列的通项公式.是等比数列,首项是1,公比是2,共64项. 通项公式为〖a_n=2〗^(n-1)问题2:请将发明者的要求表述成数学问题.
二、典例解析例10. 如图,正方形ABCD 的边长为5cm ,取正方形ABCD 各边的中点E,F,G,H, 作第2个正方形 EFGH,然后再取正方形EFGH各边的中点I,J,K,L,作第3个正方形IJKL ,依此方法一直继续下去. (1) 求从正方形ABCD 开始,连续10个正方形的面积之和;(2) 如果这个作图过程可以一直继续下去,那么所有这些正方形的面积之和将趋近于多少?分析:可以利用数列表示各正方形的面积,根据条件可知,这是一个等比数列。解:设正方形的面积为a_1,后续各正方形的面积依次为a_2, a_(3, ) 〖…,a〗_n,…,则a_1=25,由于第k+1个正方形的顶点分别是第k个正方形各边的中点,所以a_(k+1)=〖1/2 a〗_k,因此{a_n},是以25为首项,1/2为公比的等比数列.设{a_n}的前项和为S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10个正方形的面积之和为25575/512cm^2.(2)当无限增大时,无限趋近于所有正方形的面积和
课前小测1.思考辨析(1)若Sn为等差数列{an}的前n项和,则数列Snn也是等差数列.( )(2)若a1>0,d<0,则等差数列中所有正项之和最大.( )(3)在等差数列中,Sn是其前n项和,则有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在项数为2n+1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故选B项.]3.等差数列{an}中,S2=4,S4=9,则S6=________.15 [由S2,S4-S2,S6-S4成等差数列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知数列{an}的通项公式是an=2n-48,则Sn取得最小值时,n为________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有负项的和最小,即n=23或24.]二、典例解析例8.某校新建一个报告厅,要求容纳800个座位,报告厅共有20排座位,从第2排起后一排都比前一排多两个座位. 问第1排应安排多少个座位?分析:将第1排到第20排的座位数依次排成一列,构成数列{an} ,设数列{an} 的前n项和为S_n。
一 减数分裂高一生物减数分裂说课稿各位评委、老师:大家好,我今天说课的题目是高中生物必修2第二章第一节〈〈减数分裂与受精作用〉〉第一部分减数分裂第一课时精子形成过程。接下来我就从以下几个方面来说说这一节课。一、说教材1.教材地位和作用《减数分裂》这一部分内容不仅是第二章的重点内容,也是整本书的重点内容之一。它以必修一学过的细胞学知识、染色体知识、有丝分裂知识和初中生殖种类知识为基础。通过学习,使学生全面认识细胞分裂的种类、实质和意义,为后面学习遗传和变异,生物的进化奠定细胞学基础。2.教学目标(1)知识目标:掌握减数分裂的概念和精子的形成过程;理解减数分裂和受精作用的意义。(2)能力目标:通过观察减数分裂过程中染色体的行为变化,培养学生识图、绘图能力以及比较分析和归纳总结的能力。
二、教材分析本节课是让学生结合具体情境,理解路程、时间与速度之间的关系。为此,教材安排了一个情境:比一比两辆车谁跑得快一些?从而让学生归纳出路程、时间与速度三个数量,进而归纳出速度=路程÷时间,再结合试一试两题,让学生得出:路程=速度×时间,时间=路程÷速度,进一步理解路程、速度、时间三者之间的关系。因此,理解路程、时间与速度之间的关系是本节课的重点,难点是速度的单位。学习了这节课,学生可以解决生活中的一些实际问题,并且可以合理地安排时间,提高效率。三、学情分析学生对于路程、时间与速度的关系一定有所了解,但他们虽然知道三者之间的数量关系式,却并不十分了解为什么有这样的关系。因此,在课上应遵循“问题情境---建立模式---解释应用”的基本叙述模式,为学生自主参与、探究和交流提供时间和空间。四、教学目标
二、以人为本,说策略。《数学课程标准》指出:“数学教学要紧密联系学生的生活实际,从学生的生活经验和已有的知识出发……”因此,结合本课教材特点、学生实际情况,我采取小组合作学习,引导学生应用学过的分数、小数互化的知识进行迁移、类推,学习新知识。同时,让学生在尝试探究的积极活动中获取新知,发展能力。三、以探为主,说流程。课堂教学是学生数学知识的获得、技能技巧的形成、智力、能力的发展以及思想品德的养成的主要途径。为了达到预期的教学目标,我对整个教学过程进行了系统地规划,遵循目标性、整体性、启发性、主体性等一系列原则进行教学设计。设计了以下几个主要的教学程序:(一)设疑激趣,引入课题。“兴趣是最好的老师”,为了激发学生的学习兴趣,课一开始,我设计了一个童话故事,在故事中设计了帮助主人公比较2/5、42%、0.45的问题,然后引出课题。