解析:当a0时,直线ax-by=1在x轴上的截距1/a0,在y轴上的截距-1/a>0.只有B满足.故选B.答案:B 3.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:设所求直线方程为x-2y+c=0,把点(1,0)代入可求得c=-1.所以所求直线方程为x-2y-1=0.故选A.4.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a=________.答案:1或-3 解析:依题意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m的范围;(2)若该直线的斜率k=1,求实数m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直线,则m2-3m+2与m-2不能同时为0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
1.判断正误(正确的打“√”,错误的打“×”)(1)函数f (x)在区间(a,b)上都有f ′(x)<0,则函数f (x)在这个区间上单调递减. ( )(2)函数在某一点的导数越大,函数在该点处的切线越“陡峭”. ( )(3)函数在某个区间上变化越快,函数在这个区间上导数的绝对值越大.( )(4)判断函数单调性时,在区间内的个别点f ′(x)=0,不影响函数在此区间的单调性.( )[解析] (1)√ 函数f (x)在区间(a,b)上都有f ′(x)<0,所以函数f (x)在这个区间上单调递减,故正确.(2)× 切线的“陡峭”程度与|f ′(x)|的大小有关,故错误.(3)√ 函数在某个区间上变化的快慢,和函数导数的绝对值大小一致.(4)√ 若f ′(x)≥0(≤0),则函数f (x)在区间内单调递增(减),故f ′(x)=0不影响函数单调性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用导数判断下列函数的单调性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因为f(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函数在R上单调递增,如图(1)所示
一、 问题导学前面两节所讨论的变量,如人的身高、树的胸径、树的高度、短跑100m世界纪录和创纪录的时间等,都是数值变量,数值变量的取值为实数.其大小和运算都有实际含义.在现实生活中,人们经常需要回答一定范围内的两种现象或性质之间是否存在关联性或相互影响的问题.例如,就读不同学校是否对学生的成绩有影响,不同班级学生用于体育锻炼的时间是否有差别,吸烟是否会增加患肺癌的风险,等等,本节将要学习的独立性检验方法为我们提供了解决这类问题的方案。在讨论上述问题时,为了表述方便,我们经常会使用一种特殊的随机变量,以区别不同的现象或性质,这类随机变量称为分类变量.分类变量的取值可以用实数表示,例如,学生所在的班级可以用1,2,3等表示,男性、女性可以用1,0表示,等等.在很多时候,这些数值只作为编号使用,并没有通常的大小和运算意义,本节我们主要讨论取值于{0,1}的分类变量的关联性问题.
温故知新 1.离散型随机变量的定义可能取值为有限个或可以一一列举的随机变量,我们称为离散型随机变量.通常用大写英文字母表示随机变量,例如X,Y,Z;用小写英文字母表示随机变量的取值,例如x,y,z.随机变量的特点: 试验之前可以判断其可能出现的所有值,在试验之前不可能确定取何值;可以用数字表示2、随机变量的分类①离散型随机变量:X的取值可一、一列出;②连续型随机变量:X可以取某个区间内的一切值随机变量将随机事件的结果数量化.3、古典概型:①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等。二、探究新知探究1.抛掷一枚骰子,所得的点数X有哪些值?取每个值的概率是多少? 因为X取值范围是{1,2,3,4,5,6}而且"P(X=m)"=1/6,m=1,2,3,4,5,6.因此X分布列如下表所示
1.确定研究对象,明确哪个是解释变量,哪个是响应变量;2.由经验确定非线性经验回归方程的模型;3.通过变换,将非线性经验回归模型转化为线性经验回归模型;4.按照公式计算经验回归方程中的参数,得到经验回归方程;5.消去新元,得到非线性经验回归方程;6.得出结果后分析残差图是否有异常 .跟踪训练1.一只药用昆虫的产卵数y与一定范围内的温度x有关,现收集了6组观测数据列于表中: 经计算得: 线性回归残差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分别为观测数据中的温度和产卵数,i=1,2,3,4,5,6.(1)若用线性回归模型拟合,求y关于x的回归方程 (精确到0.1);(2)若用非线性回归模型拟合,求得y关于x回归方程为 且相关指数R2=0.9522. ①试与(1)中的线性回归模型相比较,用R2说明哪种模型的拟合效果更好 ?②用拟合效果好的模型预测温度为35℃时该种药用昆虫的产卵数.(结果取整数).
导语:同学们,你们瞧!我们的水东家乡不仅山美、水美、人美而且还有丰富的物产资源。看到这些,你们的心里在想些什么呢?你们想用什么形式来赞美我们的家乡呢?1、小组同学讨论。(诗歌表演、歌曲表演、赞美的话、简笔画 )3、请同学代表表演。 (五)、总结:同学们,短短的旅行即将结束,你是不是也像老师一样意犹未尽呢?在这节课上,我们不仅对家乡多了一份了解,而且又多了一份爱,增添了一份自豪。你们那些发自肺腑的言语感动着我们在座的每一位老师与同学。今天,我们为自己的家乡感到自豪;希望未来,家乡为你们的成长感到自豪。最后,让我们在优美的歌声中,再一次欣赏一下我们美丽的家乡。让我们永远记住这个千年古镇——生我、养我、爱我、育我美丽的水东家乡吧!
20XX年3月-20XX年7月 XXX软件有限公司 市场渠道工作描述:Ø 负责公司渠道招商,开拓与维护,根据公司营销战略计划,协助制定部门渠道招商计划,并进行目标分解;Ø 根据各区域情况制订市场开拓及推广计划,建立客户档案,做好客户合同的签订、履行与管理工作;Ø 收集市场信息,分析掌握市场动态,定期、不定期拜访渠道,做好跟进和维护工作;Ø 配合公司销售团队完成销售任务,定期完成量化的工作要求,并进行分析与总结,完成上级安排的其他任务。校园经历:Ø 领导学生会媒体运营部会员积极参加协会活动,策划组织过“新媒体技能大赛”的活动,取得圆满成功;Ø 负责活动简讯的撰写,拟写学校刊物的文章和编辑,充分提高了写作能力和编辑能力。
2022.01~2022.08 XXX软件有限公司 新媒体运营l 新媒体营销:负责构思并且制定品牌每季度、月度营销方案。对营销方案执行。l 品牌营销:配合品牌推广资源,合作资源,扩大内容影响力,配合产品运营的日常工作。l 内容运营:负责新媒体的内容发布、粉丝互动、话题制造、活动执行。快速响应市面热点事件,对微博、微信账号的关注度及内容效果。负责企业画册、季刊、第三方刊物等内容撰写与更新。l 数据分析:负责用户数据的分析,为运营提供数据支持。通过后台反映的用户数据,分析用户的浏览喜好、浏览时间、对运营策略作出调整。通过分析活动与渠道数据,对活动与渠道进行优化。
1、教材的地位《观察物体》这节课是人教版《义务教育教科书?数学(二年级上册)》第五单元的第一课时。教材是从学生已有生活经验出发以及已学习了位置知识的基础上,借助于生活中的实物和学生的操作活动进行教学的。主要帮助学生建立初步的空间观念,发展他们的形象思维,通过一些活动,使学生认识到,从不同的角度观察同一个物体,看到的物体的形状可能是不同的,并让学生初步体会局部与整体的关系,通过这部分内容的教学,不但可以使学生学会从不同的角度观察物体,而且又为以后学习有关几何图形的知识打下坚实的基础。 2、教学目标依照《新课程标准》的要求,结合教材和学生的特点,从知识与技能、过程与方法和情感态度价值观三方面制定以下教学目标:(1)能辨认并能想象从不同位置看到的简单物体的形状。 (2)在探究中,学生掌握全面、正确的观察物体的基本方法,并感受到局部与整体的关系。 (3)通过活动,感受数学与生活的联系,培养学生观察物体的兴趣和热情。3、教学重点、难点由于小学二年级的学生方位感不强,他们往往前后不分,左右搞错,观察周围的事物也是比较单纯、直观地看表面。
1.教学内容 《圆柱的体积》是人教版小学数学第十二册第三单元的内容,它包括圆柱体的体积计算公式的推导和运用公式计算体积。2.本节课在教材中所处的地位和作用本节课是在学生已经学过了圆面积公式的推导和长方体、正方体的体积公式的基础上进行学习的,学生已经有了把圆形拼成近似的长方形的经验,联想到把圆柱切拼成长方体并不难,学好这部分知识,为今后学习复杂的形体知识打下扎实的基础,是后继学习的前提。3.教材的重点和难点圆柱体积的计算是本节课的教学重点。圆柱体积公式的推导过程是本节课的难点。弄清楚圆柱与转化后的近似长方体之间的关系是教学的关键。4.教学目标 知识与技能目标:经历认识圆柱体积、探索圆柱体积计算公式及简单应用的过程;探索并掌握圆柱体积公式;能计算圆柱的体积。情感与态度目标:在探索圆柱体积的过程中,进一步体会转化的数学思想,体验数学问题的探索性和挑战性,感受数学结论的确定性。
教学目标1、认识长度单位毫米,建立1毫米的长度概念,会用毫米厘米度量比较短的物体的长度。2、培养学生的估测意识和能3、培养学生的动手实践和合作学习的能力,并感受生活中处处有数学。教学重点:认识长度单位毫米,会用毫米度量物体长度。教学难点:培养学生的估测方法。教学过程一、引言二、估测数学书的长、宽、厚的长度。师:请同学们观察数学书的长、宽、厚,并估一估大约有多长,然后把估测的结果填入下表?估计实际测量数学书的长数学书的宽数学书的厚生1:数学书的长大约是21厘米、宽大约是14厘米、厚有1厘米。师:你是怎么想的?生1:因为1厘米大约有一个指甲长那么长,数学书的长大约就有21个指甲长那么长,数学书的宽有14个指甲长那么长,数学书的厚有1个指甲长那么厚。
教具、学具准备:各种形状的纸、树叶、绳子、直尺、卷尺等。教学过程:一、今天,老师给大家带来了一些物品和平面图形,你们认识吗?(逐一出示)谁知道周长是什么意思?请你具体指一指,你所喜欢的图形的周长是指什么样的长度。(一生指)二、探究求长方形和正方形周长的计算方法长方形和正方形的周长怎么求呢?正方形的周长只要量一条边长,乘4就可以了。(板书:边长×4)如果量出正方形的边长是5厘米,它的周长是多少?5×4=20(厘米)。长方形的周长呢?量出四条边的长度,加起来就好了。长+宽+长+宽(板书)。如果长是6厘米,宽是4厘米,它的周长就是:6+4+6+4=20(厘米)。只要量两次就可以了,量一个长再乘2,量一个宽再乘2就行。长×2+宽×2。即:6×2+4×2=20(厘米)。如果让你求长方形的周长,必须要知道什么条件?正方形呢?想清楚了,我们来解决一些实际问题。
教学内容:书上第84页公顷、平方千米教学目标:1、让学生知道公顷、平方千米是更大的面积单位,了解1公顷、1平方千米的实际大小。2、知道1公顷=10000平方米,1平方千米=100公顷。3、培养学生的空间观察和动手操作能力,培养学生的爱国主义情感。教学重点:使学生了解1公顷、1平方千米的大小。掌握土地面积单位间的进率。教学难点:建立1公顷及1平方千米的实际概念,能区分两个单位。教学准备:课件教学过程:一、巩固旧知,作好铺垫。1、常用的面积单位有哪些?2、用打手势表示一下1平方厘米、1平方分米、1平方米的大小。3、填写正确的面积单位:指甲的面数学书本的封面黑板的面二、引入:同学们,我们一起来看看体育场的图片,你们有什么感想?出示:(体育场太大了)那还能用我们前面学过的面积单位进行测量吗?这就是我们今天要学的比平方米更大的面积单位:公顷和平方千米。(出示课题:公顷、平方千米)三、新授1、通常我们在测量土地面积时,要用到更大的面积单位,公顷和平方千米。它们到底有多大呢?这节课我们就来了解一下。
大家请看,钟面上现在表示的是几时?(下午1时)下午1时我们还可以怎样表示?(13时)下午1时就是13时,你是怎么想到用13时表示的?在一日内,由于第一圈走了12小时,所以时针在走第二圈时,我们就要把时针指的钟面上的时刻数分别加上12,这就是我们今天要学习的24时记时法。比如,现在钟面上是下午1时,根据24时记时法就应该是?(13时)。那么下午2时、3时、6时、晚上7时30分、9时50分用24时计时法怎样表示?你是怎样想的?(继续看画面。)这时,同学们又开始了下午的学习生活。16时,同学们结束了一天的学习,回到了家中。时间一晃就到了21时,也就是我们常说的夜间九点。这时我们又该上床休息了。时间一分一秒地过去了,又是午夜12点,夜深人静,一天又过去了。这种用0时到24时来表示一天时间的记时方法我们就把它叫做24时记时法。师小结:同学们,一天的时间很快就会过去,我们要珍惜时间,合理地安排好一天的作息时间。4、观察钟面:你发现了什么?(同一指针可以表示晚上12时、0时、24时。)抽几个时间板书。观察普通计时法和24时计时法,发现他们有什么区别呢?同桌之间互相交流一下。
谈话导入 1、咱班的小朋友今天可真精神,孩子们,喜欢听故事吗?(喜欢)今天陈老师给大家带来了一个好听的故事,故事的名字叫“揠苗助长”。来,伸出小手和老师一起书写课题,“揠”是提手旁,“助”是“帮助”的助。 2“揠苗助长”讲了一个什么故事呢?我们一起来听听吧。(放课件) 3、故事听完了,那你知道揠是什么意思吗?(拔),噢!所以也有好多人把揠苗助长叫(拔苗助长)。这个农夫想让禾苗快点长高,就(拔禾苗)帮助禾苗生长。可结果禾苗却枯死了。想不想自己读读这个故事?(想)。
2、教学目标根据我对教材的理解、结合学生的实际情况、渗透新课程的教学理念,为提高全体学生的科学素养,按课程标准,以促进全体学生发展为目的。从知识与技能、过程与方法,情感态度与价值观三个方向培养学生,拟定三个教学目标:知识与技能:(1)知道什么是动能。(2)正确理解和运用动能公式分析、解答有关问题。(3)掌握外力对物体所做的总功的计算,理解“代数和”的含义。(4)理解和运用动能定理。过程与方法:通过演绎推理过程,培养科学研究兴趣,领略物理学中所蕴含的严谨的逻辑关系。情感、态度、价值观:通过运用动能定理分析解决问题,感受成功的喜悦,培养学生对科学研究的兴趣。3、教学的重点和难点重点:理解动能定理、应用动能定理解决力学问题。难点:应用动能定理解决多个过程的力学问题,以及变力做功或曲线运动中的动能定理运用。
课堂教学设计说明求比一个数少几的数的应用题是低年级教学的一个难点.为了分散难点,在复习准备阶段做了孕伏.如:圆比三角形多2个,也可以说三角形比圆少2个.为了突破难点,让学生动手摆、动口说、动笔写,全方位地调动学生的各种感官参与教学全过程,使学生在参与学习的活动中领悟出“求比一个数少几的数”的应用题仍然是把较大数看作两部分组成的,从大数中去掉大数比小数多的部分,就是小数与大数同样多的部分,也就是小数的数值.也可以通过“假设同样多”去透彻地理解比一个数少几的实际意义.确实使学生理解和掌握了这类应用题用减法计算的道理和解答方法.为了让学生进一步加深理解和掌握“求比一个数少几的数”的应用题的数量关系和解答方法,在巩固练习的最后设计了一组对比题目.
第一条:参加年度考核评优的评选条件。(一)、以所教班级的学科平均分与全镇平均分的相比较进行排名,作为评优的标准。(二)、以最近两个学期的成绩作为评定的依据。1、所教的科目在前一个学期成绩的基础上要有一定的进步或保持在前一个学期的位置方可参加评优。2、只要最近一个学期所教的科目的平均分排在全镇的前三名,就不计是否有进步,同样拥有参加评优的条件。(三)、凡是因服从学校的工作安排而没有教学成绩的教师也可参加当年的评优。
活动目标:1.探索橘子的大小与瓣数的多少是否有必然的联系;2.能清楚地表达探索的过程与结果;3.学习不受物体排列方式的影响计数,探索多种计数的方法;4.尝试用数学的方法解决问题。 活动准备:1.剥开的橘子人手一个、没剥开的橘子人手两个;2.笔、记录纸、卡片等。 活动过程:1.创设问题情境,引发幼儿思考与操作。(1)幼儿想办法点数橘子的瓣数并进行记录。师:我们班的小朋友都喜欢和大家分享东西,今天我们来分享橘子,分享之前老师要考验小朋友,如果你们挑战成功就可以分享橘子。挑战的问题是:如果你和大家分享一个橘子,每个人吃一瓣,可以有几个人吃到你的橘子,想一想可以用什么办法知道。幼:数一数。师:橘子是圆的又可以掰开,那可以怎样数呢?小朋友动脑筋想一想,可以跟旁边的小朋友商量,想好了拿一个橘子用你的办法试一试。数完了不仅要把数字记在心里,还要记在记录表上。
二、农村空巢老人家庭现状 1、经济状况 经济支持是农村空巢老人养老安度晚年的物质基础。农村空巢家庭老人大多依靠田间劳动所得获取经济收入或依靠子女给予的生活费作为生活来源。其收入分布不匀,36.4%的老人收入在3200元以上,24.2%的老人在1200元以下,贫困的还有12925人,占39.4%。享受低保的1231人,占3.75%。因此有78.8%的农村空巢老人仍然经常参加劳动和既劳动又照看孙子。主要原因是:家庭经济状况差(虽然子女外出打工但其收入主要用来供养孩子上学,对家庭里日常生活开销主要还是老人耕种所得)。