新知探究国际象棋起源于古代印度.相传国王要奖赏国际象棋的发明者,问他想要什么.发明者说:“请在棋盘的第1个格子里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放上4颗麦粒,依次类推,每个格子里放的麦粒都是前一个格子里放的麦粒数的2倍,直到第64个格子.请给我足够的麦粒以实现上述要求.”国王觉得这个要求不高,就欣然同意了.假定千粒麦粒的质量为40克,据查,2016--2017年度世界年度小麦产量约为7.5亿吨,根据以上数据,判断国王是否能实现他的诺言.问题1:每个格子里放的麦粒数可以构成一个数列,请判断分析这个数列是否是等比数列?并写出这个等比数列的通项公式.是等比数列,首项是1,公比是2,共64项. 通项公式为〖a_n=2〗^(n-1)问题2:请将发明者的要求表述成数学问题.
二、典例解析例3.某公司购置了一台价值为220万元的设备,随着设备在使用过程中老化,其价值会逐年减少.经验表明,每经过一年其价值会减少d(d为正常数)万元.已知这台设备的使用年限为10年,超过10年 ,它的价值将低于购进价值的5%,设备将报废.请确定d的范围.分析:该设备使用n年后的价值构成数列{an},由题意可知,an=an-1-d (n≥2). 即:an-an-1=-d.所以{an}为公差为-d的等差数列.10年之内(含10年),该设备的价值不小于(220×5%=)11万元;10年后,该设备的价值需小于11万元.利用{an}的通项公式列不等式求解.解:设使用n年后,这台设备的价值为an万元,则可得数列{an}.由已知条件,得an=an-1-d(n≥2).所以数列{an}是一个公差为-d的等差数列.因为a1=220-d,所以an=220-d+(n-1)(-d)=220-nd. 由题意,得a10≥11,a11<11. 即:{█("220-10d≥11" @"220-11d<11" )┤解得19<d≤20.9所以,d的求值范围为19<d≤20.9
二、典例解析例10. 如图,正方形ABCD 的边长为5cm ,取正方形ABCD 各边的中点E,F,G,H, 作第2个正方形 EFGH,然后再取正方形EFGH各边的中点I,J,K,L,作第3个正方形IJKL ,依此方法一直继续下去. (1) 求从正方形ABCD 开始,连续10个正方形的面积之和;(2) 如果这个作图过程可以一直继续下去,那么所有这些正方形的面积之和将趋近于多少?分析:可以利用数列表示各正方形的面积,根据条件可知,这是一个等比数列。解:设正方形的面积为a_1,后续各正方形的面积依次为a_2, a_(3, ) 〖…,a〗_n,…,则a_1=25,由于第k+1个正方形的顶点分别是第k个正方形各边的中点,所以a_(k+1)=〖1/2 a〗_k,因此{a_n},是以25为首项,1/2为公比的等比数列.设{a_n}的前项和为S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10个正方形的面积之和为25575/512cm^2.(2)当无限增大时,无限趋近于所有正方形的面积和
课前小测1.思考辨析(1)若Sn为等差数列{an}的前n项和,则数列Snn也是等差数列.( )(2)若a1>0,d<0,则等差数列中所有正项之和最大.( )(3)在等差数列中,Sn是其前n项和,则有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在项数为2n+1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故选B项.]3.等差数列{an}中,S2=4,S4=9,则S6=________.15 [由S2,S4-S2,S6-S4成等差数列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知数列{an}的通项公式是an=2n-48,则Sn取得最小值时,n为________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有负项的和最小,即n=23或24.]二、典例解析例8.某校新建一个报告厅,要求容纳800个座位,报告厅共有20排座位,从第2排起后一排都比前一排多两个座位. 问第1排应安排多少个座位?分析:将第1排到第20排的座位数依次排成一列,构成数列{an} ,设数列{an} 的前n项和为S_n。
1.判断正误(正确的打“√”,错误的打“×”)(1)函数f (x)在区间(a,b)上都有f ′(x)<0,则函数f (x)在这个区间上单调递减. ( )(2)函数在某一点的导数越大,函数在该点处的切线越“陡峭”. ( )(3)函数在某个区间上变化越快,函数在这个区间上导数的绝对值越大.( )(4)判断函数单调性时,在区间内的个别点f ′(x)=0,不影响函数在此区间的单调性.( )[解析] (1)√ 函数f (x)在区间(a,b)上都有f ′(x)<0,所以函数f (x)在这个区间上单调递减,故正确.(2)× 切线的“陡峭”程度与|f ′(x)|的大小有关,故错误.(3)√ 函数在某个区间上变化的快慢,和函数导数的绝对值大小一致.(4)√ 若f ′(x)≥0(≤0),则函数f (x)在区间内单调递增(减),故f ′(x)=0不影响函数单调性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用导数判断下列函数的单调性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因为f(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函数在R上单调递增,如图(1)所示
新知探究前面我们研究了两类变化率问题:一类是物理学中的问题,涉及平均速度和瞬时速度;另一类是几何学中的问题,涉及割线斜率和切线斜率。这两类问题来自不同的学科领域,但在解决问题时,都采用了由“平均变化率”逼近“瞬时变化率”的思想方法;问题的答案也是一样的表示形式。下面我们用上述思想方法研究更一般的问题。探究1: 对于函数y=f(x) ,设自变量x从x_0变化到x_0+ ?x ,相应地,函数值y就从f(x_0)变化到f(〖x+x〗_0) 。这时, x的变化量为?x,y的变化量为?y=f(x_0+?x)-f(x_0)我们把比值?y/?x,即?y/?x=(f(x_0+?x)-f(x_0)" " )/?x叫做函数从x_0到x_0+?x的平均变化率。1.导数的概念如果当Δx→0时,平均变化率ΔyΔx无限趋近于一个确定的值,即ΔyΔx有极限,则称y=f (x)在x=x0处____,并把这个________叫做y=f (x)在x=x0处的导数(也称为__________),记作f ′(x0)或________,即
我们知道数列是一种特殊的函数,在函数的研究中,我们在理解了函数的一般概念,了解了函数变化规律的研究内容(如单调性,奇偶性等)后,通过研究基本初等函数不仅加深了对函数的理解,而且掌握了幂函数,指数函数,对数函数,三角函数等非常有用的函数模型。类似地,在了解了数列的一般概念后,我们要研究一些具有特殊变化规律的数列,建立它们的通项公式和前n项和公式,并应用它们解决实际问题和数学问题,从中感受数学模型的现实意义与应用,下面,我们从一类取值规律比较简单的数列入手。新知探究1.北京天坛圜丘坛,的地面有十板布置,最中间是圆形的天心石,围绕天心石的是9圈扇环形的石板,从内到外各圈的示板数依次为9,18,27,36,45,54,63,72,81 ①2.S,M,L,XL,XXL,XXXL型号的女装上对应的尺码分别是38,40,42,44,46,48 ②3.测量某地垂直地面方向上海拔500米以下的大气温度,得到从距离地面20米起每升高100米处的大气温度(单位℃)依次为25,24,23,22,21 ③
情景导学古语云:“勤学如春起之苗,不见其增,日有所长”如果对“春起之苗”每日用精密仪器度量,则每日的高度值按日期排在一起,可组成一个数列. 那么什么叫数列呢?二、问题探究1. 王芳从一岁到17岁,每年生日那天测量身高,将这些身高数据(单位:厘米)依次排成一列数:75,87,96,103,110,116,120,128,138,145,153,158,160,162,163,165,168 ①记王芳第i岁的身高为 h_i ,那么h_1=75 , h_2=87, 〖"…" ,h〗_17=168.我们发现h_i中的i反映了身高按岁数从1到17的顺序排列时的确定位置,即h_1=75 是排在第1位的数,h_2=87是排在第2位的数〖"…" ,h〗_17 =168是排在第17位的数,它们之间不能交换位置,所以①具有确定顺序的一列数。2. 在两河流域发掘的一块泥板(编号K90,约生产于公元前7世纪)上,有一列依次表示一个月中从第1天到第15天,每天月亮可见部分的数:5,10,20,40,80,96,112,128,144,160,176,192,208,224,240. ②
本节课在已学幂函数、指数函数、对数函数的增长方式存在很大差异.事实上,这种差异正是不同类型现实问题具有不同增长规律的反应.而本节课重在研究不同函数增长的差异.课程目标1.掌握常见增长函数的定义、图象、性质,并体会其增长的快慢.2.理解直线上升、对数增长、指数爆炸的含义以及三种函数模型的性质的比较,培养数学建模和数学运算等核心素养.数学学科素养1.数学抽象:常见增长函数的定义、图象、性质;2.逻辑推理:三种函数的增长速度比较;3.数学运算:由函数图像求函数解析式;4.数据分析:由图象判断指数函数、对数函数和幂函数;5.数学建模:通过由抽象到具体,由具体到一般的数形结合思想总结函数性质.重点:比较函数值得大小;难点:几种增长函数模型的应用.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。
本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.4.3节《不同增长函数的差异》 是在学习了指数函数、对数函数和幂函数之后的对函数学习的一次梳理和总结。本节提出函数增长快慢的问题,通过函数图像及三个函数的性质,完成函数增长快慢的认识。既是对三种函数学习的总结,也为后续导数的学习做了铺垫。培养和发展学生数学直观、数学抽象、逻辑推理和数学建模的核心素养。1.了解指数函数、对数函数、幂函数 (一次函数) 的增长差异.2、经过探究对函数的图像观察,理解对数增长、直线上升、指数爆炸。培养学生观察问题、分析问题和归纳问题的思维能力以及数学交流能力;3、在认识函数增长差异的过程中,使学生学会认识事物的特殊性与一般性之间的关系,培养数学应用的意识,探索数学。 a.数学抽象:函数增长快慢的认识;b.逻辑推理:由特殊到一般的推理;
本节课是三角函数的继续,三角函数包含正弦函数、余弦函数、正切函数.而本课内容是正切函数的性质与图像.首先根据单位圆中正切函数的定义探究其图像,然后通过图像研究正切函数的性质. 课程目标1、掌握利用单位圆中正切函数定义得到图象的方法;2、能够利用正切函数图象准确归纳其性质并能简单地应用.数学学科素养1.数学抽象:借助单位圆理解正切函数的图像; 2.逻辑推理: 求正切函数的单调区间;3.数学运算:利用性质求周期、比较大小及判断奇偶性.4.直观想象:正切函数的图像; 5.数学建模:让学生借助数形结合的思想,通过图像探究正切函数的性质. 重点:能够利用正切函数图象准确归纳其性质并能简单地应用; 难点:掌握利用单位圆中正切函数定义得到其图象.
质疑问难,合作探究 1、文章是介绍沙子的知识吗? 明确: 有关恐龙灭绝的原因,原来本文的主角不是沙子,而是恐龙。 2、题目是《被压扁的沙子》,内容却恐龙灭绝的原因,题目《被压扁的沙子》是否偏离主题了?我们换成《恐龙是怎样灭绝的》会不会更好? 本文题目不但没有离题,还能提示读者,恐龙灭绝的“撞击说”所以产生,与被压扁的沙子的科学发现和科学研究密不可分此外,文题形象性强,容易激起好奇心,引起人们的阅读兴趣 3、恐龙灭绝的原因一直是学术界有争议的问题,因而产生两种学说“撞击说”“火山说”在探究恐龙灭绝的原因时,作者的观点是什么?他的观点以什么为依据,又是怎样推论出来的?
亲爱的同学们:今天在蓝天下,我们迎着初生的晨曦,举行这庄严而又隆重的升国旗仪式。我们眺望着国旗冉冉升起,耳畔回荡着气壮山河的国歌,我们为这一庄严的队礼而自豪,我们因肃然于国旗前而激动。我们是新世纪的孩子,浴血奋战、硝烟弥漫的战火已离我们久远;历史的恩怨,国危的呼号也融进了历史。但是,国旗,这新中国的象征;国歌,这一中国人心中最激越的旋律,穿越时空,延续着我们中华民族的伟大传统,凝聚着新中国的豪情壮志,昭日月,耀千秋。国旗的光辉伴随着我的成长,照亮了我们前进的道路;国歌的旋律激励我们继承先辈的伟大事业,不懈奋斗。一面国旗,招展着一种象征:战争中的勇气,异国思乡的亲情,国际交往的尊严;一面国旗,书写着丰厚的内涵
时光易逝,光阴难留。就在这个即将结束的六月里,又一批心怀理想的少年交出了他们的青春答卷。看吧——在紧张严肃的考场里,同学们信心满怀,堂堂正正,以笔为剑,披荆斩棘,令人钦佩;却难免有人别有用心,企图投机取巧,来攫取本不属于自己的高分,妄图破坏考试的公平性,令人不耻。这般行为与盗窃何异?考场如一面镜子,照出诸生百态,个人诚信与否就这样显露无余。这一幕幕场景再一次提醒我们:贯彻诚信考试精神,坚决拒绝舞弊作假。孔子曰:“人而无信,不知其可。”诚信,乃立德之本,树人之根。它是培养美德的基本要求,也是中华民族的优秀传统。而在检测能力水平的考试中,诚信就显得更加重要。我想:占小便宜的心理是导致作弊行为的原因,爱慕虚荣是诚信的死敌,也正是生活中许多不良现象的源头。
(2)平均数受数据中的极端值(2个95)影响较大,使平均数在估计总体时可靠性降低,10天的用水量有8天都在平均值以下。故用中位数来估计每天的用水量更合适。1、样本的数字特征:众数、中位数和平均数;2、用样本频率分布直方图估计样本的众数、中位数、平均数。(1)众数规定为频率分布直方图中最高矩形下端的中点;(2)中位数两边的直方图的面积相等;(3)频率分布直方图中每个小矩形的面积与小矩形底边中点的横坐标之积相加,就是样本数据的估值平均数。学生回顾本节课知识点,教师补充。 让学生掌握本节课知识点,并能够灵活运用。
战胜挫折,走向成功古人云:人生不如意,十有八九。挫折是人生的必然,是指个体在从事有目的的活动中,遇到了障碍或干扰,导致其动机不能实现,需要不能满足时产生的情绪反应。如同人生观的影子,它将伴随着每一个人前进的脚步。虽然谁都期望一生中一帆风顺,事事如意,但是或早或迟,或大或小,总难免遇害上各式各样的挫折。认真准备考试,却没有得到理想的成绩;以诚待人,却换来嘲讽的目光-----这些困难都会给我们造成挫折感。面对这些失败,我们会难过,会哭泣,然而,困难不会因泪水退却,人生的磨难也从来不会给出软弱的心灵让座,不能让沮丧把青春的果实泡得霉烂。是逃避,不明奋起?我想大多数人会选择后者。挫折能使人真正的保持聪明和清醒。当遇到挫折和不如意时,越是回避越难以解脱,只有敢于直面它,掌握和运用正确的方法,这才能逐渐走向成熟。作为一名学生,中考、高考的失利应该是较大的挫折之一吧!落榜时,多年的努力付诸东流,那种痛苦是无法用言语来形容的。落榜带来的创伤是难以愈合,但是我们能做的就只是哭泣,沉沦吗?相信大家都听过张继的《枫桥夜泊》吧!这首流传千古的名诗正是他科举落榜后写的。
法在我心中老师们、同学们,早上好!今天我演讲的题目是《法在我心中》。当清晨的第一缕阳光暖在心头,当黄昏的末一丝晚霞象我招手,时间便又匆匆而去。今天,我的心情有些沉重,因为小伟的故事让我震惊,让我心痛。小伟——XX省一个9岁的小学生,他非常想拥有一本《十万个为什么》,当他高高兴兴地问求妈妈的时候,妈妈却用“考上了第一就买,考不上就比买”而冷冷地回答了他。因为他从未考过第一,想看这本书了。于是他作出了一个荒唐的决定:敲诈邻居74岁的王奶奶。他曾两次把纸条夹到王奶奶家的门缝里,声称不拿出100元钱,就让她全家死光!大家可以想象得到:一位年过七旬的老人会是怎样的惊恐、焦虑与不安。很快,这个9岁的敲诈者便被警察抓捕归案。同学们:听完了这个故事,你有何感想呢?也许你会气愤地说:“应送他去少年管教所”,也许你会平淡地说:“孩子小,一个玩笑而已”也许你会怨恨说“是他妈妈不恰当的爱而激他犯错”,也许你也会理智地说:“是因为他缺乏法律意识而自酿苦果”。是啊,我们每个人在成长的历程中都难免会犯错。犯错并不可怕,可怕的是如何面对。
尊重他人,尊重自己老师同学们早上好!今天我讲话的题目是“尊重他人,尊重自己”。我们中国是礼仪之邦,“己所不欲,勿施于人” “敬人者人恒敬之,爱人者人恒爱之”,这些藏在我们语文书日积月累中的古训我们耳熟能详。老师教会我们将心比心,一个真正懂得尊重他人的人,善待他人的人,必定能赢得他人的尊重,他人的善待。先给大家讲一个真实的故事。一天,一位妈妈带着儿子 ,儿子哭个不停,于是,她很生气地停下来,拿出纸巾给他擦鼻涕。擦完便把纸巾丢在了干净的地上。这时在旁边打扫卫生的老人,走过来把纸巾捡起来,放进了垃圾桶,什么也没有说。当妇女再次把纸巾丢在地上,老人还是静静地把它捡起来放进垃圾桶。妇女瞥了老人一眼,对儿子说:“如果你不听话,不努力学习,长大后找不到好工作,就会像那个人一样,要干这些肮脏的活,被人瞧不起!”老人走过来,说:“这里只有集团职工才可以进来,请问您是怎么进来的?”妇女很自豪地说:“我是集团营销部的经理!”老人听完,拿出手机拨了一个电话,随后便出来一位青年,老人说:“我建议您重新考虑营销部经理的人选。”
珍爱生命,远离毒品老师们、同学们:早上好!今天我国旗下演讲的题目是《珍爱生命,远离毒品》。懂得历史的人都知道,早在200多年前,英帝国主义为了能够打开中国的大门,赚取更多的白银,就用鸦片来毒害中国人民。鸦片战争以中国的失败而告终,惨重的教训,时刻在警醒我们:毒品可以使一个民族、一个国家遭到灭亡。我们对于毒品一直很痛恨,但并不是人人都做到了自觉地抵制毒品、自觉地远离毒品、自觉地与吸毒现象作斗争。在现实生活中,就存在有很多吸毒、涉毒、贩毒的现象,许多美好的生命就在毒品中消亡。据公安机关不完全统计,全国有在册的吸毒者将近100万,近100万人中,70-80%是35岁以下的青年,而青少年已成为最易受到毒品侵害的高危人群。每年的6月26日,是一个很特别的日子——“国际禁毒日”。22年前,1987的第42届联合国大会通过决议,决定把每年的6月26日定为“国际禁毒日”。因此,每年这个时候,我们都要开展禁毒的宣传与教育。
珍惜春天的每一寸光阴开学欣逢元宵后,两千学子同春归。在这20**年的第一缕春光中,我们全校师生重返学校,迎来了新的学期。在此,我向辛勤工作在学校各个岗位,无私奉献的教职员工表示最真诚的问候:“你们辛苦了!”向放弃玩乐,回校学习的同学致以新年的祝福,祝你们在新的一年这个春天直走向自己的人生辉煌,走出自己的风采,从新起点,新的航程中扬起前进的风帆。回首20**年,我们每个人都不免心潮澎湃,感慨万千,20**年是龙胜中学全体师生同心同德、再创辉煌的一年,是历经风雨、艰苦奋斗的一年!是团结拼搏、硕果盈枝的一年!这一年,在全体师生的共同努力下,实现了各项工作新突破,学校获得快速稳健的发展。这些成绩的取得凝结着全校教师的汗水和心血,我们龙中拥有一支能打硬仗的队伍