6、改错题出现在练习七中,与以往的要求不同。学生从一年级就已形成先找错,再改错习惯。学习了加减法验算方法后,教材要求用验算的方法先检验是否正确,再改错。(就是重做一遍)这一教学环节,对学生来说有一定的难度。个别学生检验完后,不是改错,而是在验算。教师在巡视时,发现后,一再强调检验是错题后,改错就是重做一遍,可是这一教学环节,还是留有遗憾。7、当学生达到熟练验算后,就要实际应用。在备课时,我个人认为教材以表格形式出现,目的是与高段应用题验算有一定区别(高段应用题验算要求把未知变已知,把已知变未知.)这里以表格形式出现,已知、未知一目了然。通过这一习题的训练,也为今后的学习打下一定的基础。在设计这一教学环节时,我设计了让学生在掌握验算的实际应用后,挑选自己喜欢的水果和同组合作训练。可教材练习七的第8题已剩不多时间,只好指名说验算方法。
(四)联系实际,应用周长在学生有了感性认识的基础上进一步理解周长的意义,并学会用周长的知识去解决一些简单的实际问题。播放光盘中的动画:有两只小蜗牛赛跑,它们都觉得自己跑的路线长,你有什么办法帮助他们解决这个问题吗?让学生想办法帮小蜗牛它们解决这个问题。光盘资源中的动画激发学生的学习兴趣,培养学生运用所知识解决问题的能力。这个环节的设计主要目的是让学生感受数学与生活的联系,增强学习的趣味性,感受数学在现实世界中有着广泛的应用。(五)总结全课同学们,这节课,我们认识了什么?你有什么收获吗?(我们从认识边线进而认识了周长,从探索不同形状的物体周长的测量方法,到尝试去计算各种图形的周长。在我们生活中,每个物体的表面都有它们各自的周长。周长的知识在生活中的应用还是很广泛的。
一、教材分析《1亿有多大?》是人教版新教材小学四年级数学第七册第一单元内容。教材在数概念的教学中,十分重视数感的培养。让学生通过对具体数量的感知和体验,帮助学生理解数的意义,建立数感。但由于1亿这个数太大,学生很难结合具体的量获得直观感受。因此在“大数的认识”这一单元后,安排这个综合应用,旨在使学生通过探究活动,经历猜想、实验、推理和对照的过程,利用可想像的素材充分感受1亿这个数有多大。根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:二、教学目标1、通过“称一称”“数一数”“排一排”的实践活动,让学生从不同的角度感受一亿有大,并能结合实际,以具体的事物来表达对一亿大小的感受2、培养学生学习数学的兴趣和解决实际问题的能力,并在活动中增强主动参与和乐于合作的意识,培养勤俭节约的优良品德。
(三)巩固内化俗话说的好:“熟能生巧”。数学离不开练习,要掌握知识,形成技能技巧,一定要通过练习。养成良好的思维品质也要通过一定的思考练习,课程标准提倡练习的有效性。对此,我非常注意将数学的思考融入不同层次的练习之中,很好的发挥练习作用。提高了教学的有效性。所以在学习完新知后我设计了两组游泳与跑步的场景,意在让学生知道这两组成绩排名与上面不一样,是秒数越少成绩越高.(从小到大排列)使学生明确要根据生活实际灵活的解决问题。游泳结果是9.88<10.3<11.2跑步结果是12<13.16<17.5<18.2(四)拓展练习用0、2、4、6四个数字和小数点写出下面小数,看谁写得多。大于2的三位小数。小于6的三位小数。通过这组的练习,使学生不但巩固了知识,更重要的是数学思维得到不断的拓展。(五)总结归纳说一说小数比较大小的方法。并强调小数的数位多不一定大。
教材分析:本课是一个实践活动课——制作年历。这节活动课是学生掌握了年、月、日知识后的综合应用。在制作过程中,学生会输出大量年、月、日的知识,经历从年具体到月再具体到日的过程。体现了年月日之间的内在联系。这节实践活动课可以说既是对年、月、日这一单元知识的总结,又体现了数学的应用性与趣味性。学情分析:三年级的学生具有一定的动手操作能力;有一定的小组合作意识和能力;具有一定的观察、发现、分析、交流和搜集资料的能力;同时还具有一定的生活经验,比较关注自己周围的事物,对自己熟悉的事物比较感兴趣,喜欢关注“有趣、好玩、新奇”的事物等。这些都为本次活动的学习得于顺利开展奠定了基础。根据以上分析,我为本课设定以下几个活动目标:知识与技能目标:通过活动复习巩固本学期所学的年、月、日的知识。
(四).拓展延伸,提高认识。这节课学习了什么?你是怎样进行估算的?你是怎样学习方法的?估算方法的认识:两数很接近最好一个估大,一个估小。如果两数相差很大,要看大数。估算的要求:计算方便;与实际得数接近;符合实际情况学习估算的方法:把结果与准确计算结果比;策略要符合实际情况;总之,要放在实践中学习。[从总结内容,总结方法,总结评价标准,总结学习过程多个角度去评价自己的学习,让学生明白:我学到了什么?我是怎样学习的?我学习得怎么样?]四.预设结果。这节课这样教以后,学生可能都会达到预定的教学目标,也学得比较轻松愉快。在经历一系列现实问题后,学生不再觉得估算难以捉摸,并会对估算教学产生亲切感。总之这样的教学设计,会让学生体会到更多的估算价值,学生解决实际问题能力也会大大提高。
三、学情与教材分析《积的变化规律》是九年义务教育课程标准实验教科书小学数学四年级上册第三单元的内容。本课例以一组乘法算式为载体,引导学生探索当一个因数不变时,另一个因数与积的变化规律。在学生已经掌握了乘法运算的基本技能的基础上,在乘法运算中探索积的变化规律。通过这个过程的探索,学生将会经历研究问题——归纳发现规律——解释说明规律——举例验证规律四个层次的学习过程。学生将会用到观察、计算、自主探索、合作交流等学习手段,并最终发现规律,归纳与验证规律,从而有效的培养学生探索与推理的能力,让学生体会事物间是密切相关的,受到辩证思想的启蒙教育。例题的设计分三个层次:1、教材设计了一组乘法算式,引导学生在观察,计算,对比的基础上自主发现因数变化引起积的变化规律。
《排队问题》是人教版教材第七册《数学广角》中的内容,是继“烙饼问题”、“沏茶问题”之后再一次向学生渗透运用运筹思想解决生活实际问题的新增内容。排队论是关于随机服务系统的理论,其中的一项研究是怎样使服务对象的等候时间最少的问题。这部分知识对学生来说,比较抽象,难以理解的。但由于学生在日常生活中都有过排队等候的经历,所以,在这节课的教学中,我想就用这个学生熟悉的情境为切入口,通过演绎、例举、观察、分析、优化,形象地帮助学生理解什么是“等候时间的总和”,以及归纳出按怎样的顺序安排才会使等候时间的总和最少。本节课采用“阅读-讨论式教学法”。通过让学生阅读教材中的主题图和相关文字,初步感知生活中的数学现象,通过讨论,合作学习,探索出各种排队等候的方案,在通过计算,对每种方案进行选择,从而找到最优化方法,在此过程中,让学生体会到运筹思想在解决生活中实际问题的作用。
一、说教材:本节课是人教版义务教育课程标准实验教科书四年级数学上册第一单元《亿以内数的认识》里的例题4。本节课的内容是在数数、读、写数以及10000以内数大小比较的基础上进行教学的。教材一开始就联系生活,通过比较我国面积最大的六个省份的大小,引导学生讨论比较数的大小的方法。然后,教材设计了一系列不同层次的练习,意在巩固和发展学生比较数的大小的能力。这堂课我通过小组活动,使学生在“活动”中学数学,归纳总结出亿以内数位数相同和位数不同的数的比较大小的方法,为学生以后学习更大的数比较大小打下了坚实的基础。二、学情分析:本课教学对象是四年级学生,其思维特点是以具体形象思维为主,因此我把“亿以内数的大小比较”这一知识,溶合在学生所进行的“抽数比大小”活动之中,让学生在活动中掌握亿以内数的大小比较的方法。
教材分析:本活动是在学生掌握了一些统计的基础上设计的。通过记录家里一周的日常开支、绘制折线统计图等活动,一方面可使学生经历收集、整理和分析数据的过程,巩固前面所学的知识,另一方面还能让学生试着学习理财,合理安排日常开支,感受数学的实际应用,逐步形成应用意识,培养学生的理财意识与能力,养成勤俭节约的好习惯。学情分析:学生已掌握了简单的统计知识,但缺乏调查数据、分析数据、整理数据及解决实际问题的能力和积极探究问题的精神以及理财的能力。这堂活动课为学生创设了熟悉的生活情境,让学生通过身边的问题,开展调查分析,发现问题,并解决问题,既有利于学生已学知识的巩固,又有利于调动学生积极参与探究问题的兴趣。同时通过从与自家切身利益有关的问题出发,让学生积极参与到自己家庭的建设规划之中,为家庭建设提出合理化的建议,从小树立勤俭节约的思想。
学生自己讨论如何比较两道算式的大小,根据时间进行调节,若有时间进行讲解,若无时间留作回家思考的题目。课件在这一环节充分利用了声音,图像等手段,让学生对嘟嘟熊这一朋友有了直观的认识,嘟嘟熊的出现,使本节课又推向了一个新的高潮。这时恰当进行全课总结,颁发礼物的同时又进行了德育渗透,使整节课水到渠成。整节课在教学环节上由一条嘟嘟熊的线索贯穿到底,很自然,顺畅。从基本练习——对比练习——计算练习——巧算总分——比一比,由简到难,而且在每个环节中也都有层次,形成了一个立体的,多维的课堂。在教学中教师始终秉承一个理念:“不同的人在数学上得到不同的发展”。使得这节课在很多环节都体现了算法多样化及合作学习。在教学评价上,本节课很重视师生评价,生生互评,而且评价的方式也多样化,有口头表扬,有贴纸奖励,更有最后的全班评价奖励,可以说整节课都将德育渗透进行到底!
⑴、理解小数乘法交换律、结合律和分配律的意义,能运用运算定律进行小数的计算简便。⑵、经历发现归纳小数乘法交换律、结合律、分配律的全过程。学习“猜测—验证”的科学思维方式,提高类比、分析、概括的能力。⑶、在合作交流的学习活动中,提高人际交往能力。4、教学重点、难点从猜测—验证中归纳乘法交换律、结合律和分配律。二、教法和学法1、充分发挥学生的主体作用,在教学中注意让学生自主探索、发现规律、理解规律,通过猜测—验证,引导启发学生发现规律。引导学生积极、主动地参与到知识的形成过程中去。2、自始至终注意培养学生观察、比较、抽象概括能力,教给学生观察、比较、抽象概括的方法。在教学中不仅引导学生有序地观察比较,还充分运用小组合作讨论的手段,进行小组合作讨论,各抒己见,取长补短,在观察到的感性材料的基础上加以抽象概括,形成结论。
《较复杂的小数乘法》是第九册第一单元《小数的乘法和除法》的第三节。本 节课的教学内容是教科书第3页的例3、例4。这一教材是在学生学习了小数乘法的意义(小数乘以整数、一个数乘以小数)、小数乘法的计算法则以及小数点位置 移动引起小数大小的变化的基础上进行教学的,它是小数乘法计算法则的引伸和补充,同时也是学生今后进一步学习小数四则混合运算的基础。本节课 的教学目的是:1、使学生进一步掌握小数乘法的计算法则,懂得在点积的小数点时,乘得的积的小数位数不够的,要在前面用0补足;2、使学生初步掌握“当乘 数比1小时,积比被乘数小;当乘数比1大时,积比被乘数大”;3、培养学生的计算能力,自学能力和概括能力。本节课的教学重点是:让学生掌握在定积的小数 时,位数不够的会用0补足。
三、应用知识,解决问题1、练习P63做一做,并根据统计图进行分析和提建议。(1)学生动手制作。(2)用幻灯展示学生作品,并评议。(3)谈自己根据统计图进行分析和提建议2、学生动手绘制折线统计图。(用自己收集的数据进行绘制折线统计图)(1)学生绘制折线统计图。(2)学生谈自己收集数据与绘制折线统计图的目的?(教师选择性地展示学生的作品,并交流)生1:我收集的数据是自己上学期期末考试成绩与这学期第一、二两单元的数学成绩,制图目的是为了清楚地看出自己本学期成绩变化情况。生2:我收集的数据是妈妈店上3月下旬衣服销售情况,目的是为了帮助妈妈如何调整进货。生3:我收集的是今年1—3月份,我家的用电情况,目的是通过观察用电的变化情况来调整用电,尽量做到节约用电。生4:我妈妈是医生,我从妈妈那收集了我7—12岁的身高数据,制折线统计图的目的是为了更好地了解自己的生长情况,并通过这一情况来指导我班同学的饮食。
(三)看书质疑师:今天探索的问题与教科书第20-21页里例2-例3的内容相似,打开看看,书是怎么解答的?有疑问的可以提出来。生认真看书。生质疑。三、模拟练习,拓展应用师:请看学校调查表(课件出示),还有什么问题没有解决啊?(买折叠车和同学去秋游的人数)想解决吗?(想)师:提供这个信息能解决什么问题呢?生:买车的人数。师:你会直接口算吗?会的请你站起来告诉大家。生都站了起来了。师:这么都同学会啊,老师很为你们高兴,还是请代表说。生说。师:你们有意见吗?生:没有(好)师:谁能求出选择秋游的人数?生:不能啊,条件不充分师:那你能根据图意估计一下,然后补充一个条件,使我们能用今天的知识算出这些人数吗?
教材分析:例2以学校兴趣小组为题材,引出稍复杂的已知一个数的几分之几是多少,求这个数的实际问题。用算术方法解决这样的实际问题,不仅需要逆向思考,还要把“比一个数多它的几分之几”,转化为“是一个数的几分之几”,比较抽象,思维难度大。用方程解,可以列成形如 的方程,也可以列成形如 的方程,前者仍然要经历从“多几分之几”到“是几分之几”的转化,实际上是方程的形式,算术的思路。教学重点:弄清单位“1”的量,会分析题中的数量关系。教学难点:分析题中的数量关系。学情分析:由于小学生目前尚未接触到比较复杂的,用算术方法很难解决的实际问题,所以对方程解法的优越认识不足。一些学生觉得用方程解需要写设句,比较麻烦,因此喜欢用算术解法。对此,教师一方面应肯定学生自己想到的正确解法,另一方面又要因势利导,从进一步学习的需要与方程解法的特点等角度,使学生初步了解学习列方程解决问题的重要性。从而提高学习用方程解决问题的自觉性和积极性。
小学生学习的主动性,大多取决于兴趣,他们充满好奇,对显而易见的实物和直观信息敏感性强、接受快。借助多媒体计算机CAI辅助教学,把所学内容更加直观地表现出来。4.游戏式复习热身,体现课堂教学开放性利用做游戏的形式进行旧知识的复习,既消除了上课初老师和学生之间的陌生感,又激发了学生学习兴趣,同时又对前面所学内容进行了巩固。5.综合运用“愉快教学”、“情境教学”、“合作学习”等多种教学方法,降低学习难度,活跃课堂气氛。6.展开活动式教学,设计各种形式为教学服务的活动,让学生在学中乐,在乐中学,不断强化知识的巩固记忆。7.设置评比台,及时评价小组及个人表现,鼓励学生积极参与学习活动。四、说教学流程1.拍手游戏热身2.师生问好,交流,对第一页内容复习3.引入第二页内容,学习新单词、句型4.趣味操练
1.直线2x+y+8=0和直线x+y-1=0的交点坐标是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程组{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交点坐标是(-9,10).答案:B 2.直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,则k的值为( )A.-24 B.24 C.6 D.± 6解析:∵直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,可设交点坐标为(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故选A.答案:A 3.已知直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,若l1⊥l2,则点P的坐标为 . 解析:∵直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,联立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴点P的坐标为(3,3).答案:(3,3) 4.求证:不论m为何值,直线(m-1)x+(2m-1)y=m-5都通过一定点. 证明:将原方程按m的降幂排列,整理得(x+2y-1)m-(x+y-5)=0,此式对于m的任意实数值都成立,根据恒等式的要求,m的一次项系数与常数项均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤
(1)几何法它是利用图形的几何性质,如圆的性质等,直接求出圆的圆心和半径,代入圆的标准方程,从而得到圆的标准方程.(2)待定系数法由三个独立条件得到三个方程,解方程组以得到圆的标准方程中三个参数,从而确定圆的标准方程.它是求圆的方程最常用的方法,一般步骤是:①设——设所求圆的方程为(x-a)2+(y-b)2=r2;②列——由已知条件,建立关于a,b,r的方程组;③解——解方程组,求出a,b,r;④代——将a,b,r代入所设方程,得所求圆的方程.跟踪训练1.已知△ABC的三个顶点坐标分别为A(0,5),B(1,-2),C(-3,-4),求该三角形的外接圆的方程.[解] 法一:设所求圆的标准方程为(x-a)2+(y-b)2=r2.因为A(0,5),B(1,-2),C(-3,-4)都在圆上,所以它们的坐标都满足圆的标准方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圆的标准方程是(x+3)2+(y-1)2=25.
1.根据课程标准的要求。本单元的主题是“生活智慧与时代精神”,课程标准的要求主要是引导学生“思考日常生活富有哲理的事例,感悟哲学是世界观的学问,能够开启人的智慧”,“解释哲学的基本问题”,“分析实例,说明真正的哲学是时代精神的精华,明确马克思主义哲学在人类认识史上的重要地位”。这些问题,综合起来就是使学生明确哲学与我们生活的关系,认识学习哲学特别是马克思主义哲学对我们人生的作用。因此,探究本问题有助于学生更好地理解本单元的内容,完成本单元的教学目标。2.根据学生的实际需要。学习哲学特别是马克思主义哲学,可以帮助学生树立正确的世界观、人生观和价值观,这也是学习哲学的主要目的。但在学生中还不同程度地存在着“哲学与我们的生活很远”、“哲学与我无关”、“哲学对我将来从事自然科学的研究没有什么用处”等认识,这些都影响着学生对哲学学习的态度和哲学作用的发挥。设置本探究问题,有助于帮助学生澄清这些模糊认识。