课前小测1.思考辨析(1)若Sn为等差数列{an}的前n项和,则数列Snn也是等差数列.( )(2)若a1>0,d<0,则等差数列中所有正项之和最大.( )(3)在等差数列中,Sn是其前n项和,则有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在项数为2n+1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故选B项.]3.等差数列{an}中,S2=4,S4=9,则S6=________.15 [由S2,S4-S2,S6-S4成等差数列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知数列{an}的通项公式是an=2n-48,则Sn取得最小值时,n为________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有负项的和最小,即n=23或24.]二、典例解析例8.某校新建一个报告厅,要求容纳800个座位,报告厅共有20排座位,从第2排起后一排都比前一排多两个座位. 问第1排应安排多少个座位?分析:将第1排到第20排的座位数依次排成一列,构成数列{an} ,设数列{an} 的前n项和为S_n。
1.判断正误(正确的打“√”,错误的打“×”)(1)函数f (x)在区间(a,b)上都有f ′(x)<0,则函数f (x)在这个区间上单调递减. ( )(2)函数在某一点的导数越大,函数在该点处的切线越“陡峭”. ( )(3)函数在某个区间上变化越快,函数在这个区间上导数的绝对值越大.( )(4)判断函数单调性时,在区间内的个别点f ′(x)=0,不影响函数在此区间的单调性.( )[解析] (1)√ 函数f (x)在区间(a,b)上都有f ′(x)<0,所以函数f (x)在这个区间上单调递减,故正确.(2)× 切线的“陡峭”程度与|f ′(x)|的大小有关,故错误.(3)√ 函数在某个区间上变化的快慢,和函数导数的绝对值大小一致.(4)√ 若f ′(x)≥0(≤0),则函数f (x)在区间内单调递增(减),故f ′(x)=0不影响函数单调性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用导数判断下列函数的单调性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因为f(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函数在R上单调递增,如图(1)所示
一、 问题导学前面两节所讨论的变量,如人的身高、树的胸径、树的高度、短跑100m世界纪录和创纪录的时间等,都是数值变量,数值变量的取值为实数.其大小和运算都有实际含义.在现实生活中,人们经常需要回答一定范围内的两种现象或性质之间是否存在关联性或相互影响的问题.例如,就读不同学校是否对学生的成绩有影响,不同班级学生用于体育锻炼的时间是否有差别,吸烟是否会增加患肺癌的风险,等等,本节将要学习的独立性检验方法为我们提供了解决这类问题的方案。在讨论上述问题时,为了表述方便,我们经常会使用一种特殊的随机变量,以区别不同的现象或性质,这类随机变量称为分类变量.分类变量的取值可以用实数表示,例如,学生所在的班级可以用1,2,3等表示,男性、女性可以用1,0表示,等等.在很多时候,这些数值只作为编号使用,并没有通常的大小和运算意义,本节我们主要讨论取值于{0,1}的分类变量的关联性问题.
温故知新 1.离散型随机变量的定义可能取值为有限个或可以一一列举的随机变量,我们称为离散型随机变量.通常用大写英文字母表示随机变量,例如X,Y,Z;用小写英文字母表示随机变量的取值,例如x,y,z.随机变量的特点: 试验之前可以判断其可能出现的所有值,在试验之前不可能确定取何值;可以用数字表示2、随机变量的分类①离散型随机变量:X的取值可一、一列出;②连续型随机变量:X可以取某个区间内的一切值随机变量将随机事件的结果数量化.3、古典概型:①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等。二、探究新知探究1.抛掷一枚骰子,所得的点数X有哪些值?取每个值的概率是多少? 因为X取值范围是{1,2,3,4,5,6}而且"P(X=m)"=1/6,m=1,2,3,4,5,6.因此X分布列如下表所示
1.对称性与首末两端“等距离”的两个二项式系数相等,即C_n^m=C_n^(n"-" m).2.增减性与最大值 当k(n+1)/2时,C_n^k随k的增加而减小.当n是偶数时,中间的一项C_n^(n/2)取得最大值;当n是奇数时,中间的两项C_n^((n"-" 1)/2) 与C_n^((n+1)/2)相等,且同时取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二项式系数的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展开式的各二项式系数之和为2^n1. 在(a+b)8的展开式中,二项式系数最大的项为 ,在(a+b)9的展开式中,二项式系数最大的项为 . 解析:因为(a+b)8的展开式中有9项,所以中间一项的二项式系数最大,该项为C_8^4a4b4=70a4b4.因为(a+b)9的展开式中有10项,所以中间两项的二项式系数最大,这两项分别为C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4与126a4b5 2. A=C_n^0+C_n^2+C_n^4+…与B=C_n^1+C_n^3+C_n^5+…的大小关系是( )A.A>B B.A=B C.A<B D.不确定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B
1.确定研究对象,明确哪个是解释变量,哪个是响应变量;2.由经验确定非线性经验回归方程的模型;3.通过变换,将非线性经验回归模型转化为线性经验回归模型;4.按照公式计算经验回归方程中的参数,得到经验回归方程;5.消去新元,得到非线性经验回归方程;6.得出结果后分析残差图是否有异常 .跟踪训练1.一只药用昆虫的产卵数y与一定范围内的温度x有关,现收集了6组观测数据列于表中: 经计算得: 线性回归残差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分别为观测数据中的温度和产卵数,i=1,2,3,4,5,6.(1)若用线性回归模型拟合,求y关于x的回归方程 (精确到0.1);(2)若用非线性回归模型拟合,求得y关于x回归方程为 且相关指数R2=0.9522. ①试与(1)中的线性回归模型相比较,用R2说明哪种模型的拟合效果更好 ?②用拟合效果好的模型预测温度为35℃时该种药用昆虫的产卵数.(结果取整数).
尊敬的老师、亲爱的同学们:大家上午好!今天,我国旗下讲话的题目是《践行志愿服务,办好文明校运》。在XX年北京奥运会和XX年南京亚青会上,有一群人,他们遍布赛场内外,甚至大街小巷;人们亲切地称他们“小红帽”、“红马甲”;他们互不相识,但有着共同的信仰:奉献、友爱、互助、进步;他们没有冠军的光环,但更值得尊重;他们就是青年志愿者。XX年,共青团中央、中国青年志愿者协会共同决定把3月5日作为“中国青年志愿者服务日”。把“志愿者”定义为:志愿贡献个人的时间、精力,在不谋求物质报酬的前提下,从事社会服务事业,为推动社会进步提供服务的人。也许“不谋求物质报酬”、“推动社会进步”这些定义听起来很大、很远,甚至让人怀疑是不是要求太高了?
向雷锋叔叔学习,就要学会“有目标、有信念、有原则、有爱心”。一个人不管做什么事情,要有坚定的目标、必胜的信念。雷锋的一生是“全心全意为人民服务”的一生,他是这样说的,更是这样做的,他是“行”的巨人!雷锋叔叔在部队,不论是训练,还是作战,大大小小的活动他一直讲原则,这里的原则就是纪律,违犯规定和原则的事情,雷锋一件都没有做过,即使是周围没有一个人在监督他,他也丝毫不会破坏制度,雷锋始终是一个严守纪律的好战士。雷锋叔叔爱憎分明,对待朋友他在日记中写到:“对待朋友,我要像春天般的温暖。”在生活中,雷锋叔叔的所有爱心全都献给了困难的人,他的心里唯独没有想到的就是他自己,就是舍己为人一心只为别人着想的崇高思想。
每一个同学都应正确评估自己,在把握自己实力的基础上,找准自己在班级的位置,给自己确立一个通过努力能够实现的目标,制定出具体的、阶段性的奋斗目标,如确立自己的期中考试目标、二年后的会考目标、三年后的高考目标,并把目标记下来,时时提醒自己,时时鞭策自己,因为二年后的会考是同学们必须面对的,是能否拿到高中毕业证,三年后的高考决定同学们考上什么样的大学。
校园内我们本着“处处是教育之地,人人是教育之师”的原则,把教育理念与科学文化知识融进校园的每一个角落,教师、学生齐动员,开垦楼后荒地。我们在开垦出来的土地上种花草,栽树木,一草一木的设置、一花一景的搭配,都使整个学校体现着浓厚的人文氛围,美好的环境不仅给学生以美的享受,更能于无声处发挥其规范学生言行,净化学生心灵的作用。在劳动之余使学生有了“学习如禾苗,懒惰如蒿草”的人生感悟。优美的校园环境对学生品德具有潜移默化、陶冶熏陶的作用。我们本着“有限空间,开拓无限创意”对教学楼墙壁进行着装,一层,名人名言警句。二层,师生书画作品。三层,获奖美术作品。四层,科技创意作品。让学生置身于文化氛围浓郁的教学楼中耳濡目染,感受传统文化与现代文化的对接,感受名人与伟人的人格魅力,感受传统工艺与现代科技完美结合。
成功者是需要坚韧的毅力和非凡的勇气的。一个人经历一些挫折并不是坏事情。“自古雄才多磨难,从来纨绔少伟男。”在我们成长的道路上,有坦途,也有坎坷;有鲜花,也有荆棘。在你伸手摘取美丽的鲜花时,荆棘同时会刺伤你的手。如果因为怕痛,就不愿伸手,那么对于这种人来说,再美丽的鲜花也是可望而不可及的。成功永远属于挑战失败的人。我们拥有年轻,年轻没有失败。只要能战胜荆棘,战胜自己,即便是弄行得遍体鳞伤,至少也可以证明我们曾经奋斗过,我们不是挫折的奴隶!
一、做一个脚踏实地的人我们每个人都有梦想,有追求,希冀得到认可和肯定,渴望赢得鲜花与掌声,希望金榜题名,春风得意,这是人之常情,哲学家黑格尔曾经说过:“一个民族有一些关注天空的人,他们才有希望”。对于民族是这样,对我们每个个体而言,也是如此,我们需要仰望星空,但理想很丰满,现实很骨感,我们必须要学会正视现实并从现实出发。就拿今天的同学们来说,你们现在所在的学校可能并不是你们梦寐以求的,也或许你们很不甘心,或者有其他这样那样的想法,但我想请同学们注意一句话:既来之,则安之。以“归零”心态,重新出发。其次,现在是新起点,新征程,你和其他大学甚至北大清华的同学又站在同一条起跑线上,只要你努力,就有无限可能。同时,我们已经取得优异的成绩,许多优秀的校友佳绩频传,不断诠释成功。近五年来,我们的同学考取公务员和事业单位40多人,考取研究生近200人,司法考试通过率曾一度突破50%,去年法考元年就有33人一次通过,省级以上获奖不胜枚举。所以今天你们的选择是正确的,从现在开始,踏踏实实的走好每一步,未来可期。
(一)城市建设气魄之大令人赞叹。昆山之行,我们深深地为其城市建设的大手笔、宽视野、科学性、前瞻性所吸引,为其建筑包罗万象、风格迥异、彰显特色、相互匹配所折服,为其坚持规划优先、高点定位、多措并举推进城市建设所震撼,与其说昆山是一座现代化都市,不如说是我国对外开放的一张名片。比如,在城市规划建设方面,昆山市敢于跳出昆山做规划,置身于长三角、全国乃至世界范围来定位,围绕“大城市、现代化、可持续”的总体要求,通过聘请国内知名设计公司甚至美国易道等国际大公司,对城市的总体发展规划、各片区详细规划及各专项规划,统盘考虑,一次成型,严格实施,确保了规划的先进性、指导性与严肃性。同时,按照“年年出精品、处处有亮点”的要求,每年都实施一批道路、桥梁等基础设施项目,以及体育场馆、文化广场、艺术中心等功能性项目,逐步建成了集健身、休、文化、展览、商业等多种功能于一体的市民文化广场,占地1.2万平米、全国县级市最先进的公共图书馆之一的昆山图书馆,占地1.6万平米、集中展示昆山经济社会发展成果的昆山科博馆,总面积50平方公里、现已位居中国10大最佳服务外包园区之一的花桥国际商务城特色建筑群等诸多城市亮点,目前全市城市化率已达到74%。在城市管理经营方面,昆山市坚持以“民生城管”的昆山城管品牌为抓手,把所有镇作为一级执行部门纳入数字城管范围,实行定点、定路段、定责任的分片包干责任制,在全国率先实现了一级指挥全覆盖。昆山市城管局每周都会确定一个重点整治的城市环境问题,集中力量予以解决,有力地保障了城市环境面貌整洁美化
一、教师对教育科研的认识大部分教师认为参与教育科研的目的是为了解决教学中的实际问题,教育科研对教学有促进作用。事实说明大部分教师想的更多的是如何更有效地将教育科研的成果运用并物化为教育质量的提高,同时也希望通过教育科学研究的实践发展与完善自我。反思我们师训工作,虽然初衷与教师们这种想法一致,即提高教师的科研能力与水平。但在实际操作中时常会有不和谐的声音,如片面追求发表文章的数量,过于注重文章内容的所谓“新潮”,热衷于设置各种奖项,奖状越做越精美,奖面也越来越宽。
一、教师对教育科研的认识大部分教师认为参与教育科研的目的是为了解决教学中的实际问题,教育科研对教学有促进作用。事实说明大部分教师想的更多的是如何更有效地将教育科研的成果运用并物化为教育质量的提高,同时也希望通过教育科学研究的实践发展与完善自我。反思我们师训工作,虽然初衷与教师们这种想法一致,即提高教师的科研能力与水平。但在实际操作中时常会有不和谐的声音,如片面追求发表文章的数量,过于注重文章内容的所谓“新潮”,热衷于设置各种奖项,奖状越做越精美,奖面也越来越宽。
(一)城市建设气魄之大令人赞叹。昆山之行,我们深深地为其城市建设的大手笔、宽视野、科学性、前瞻性所吸引,为其建筑包罗万象、风格迥异、彰显特色、相互匹配所折服,为其坚持规划优先、高点定位、多措并举推进城市建设所震撼,与其说昆山是一座现代化都市,不如说是我国对外开放的一张名片。比如,在城市规划建设方面,昆山市敢于跳出昆山做规划,置身于长三角、全国乃至世界范围来定位,围绕“大城市、现代化、可持续”的总体要求,通过聘请国内知名设计公司甚至美国易道等国际大公司,对城市的总体发展规划、各片区详细规划及各专项规划,统盘考虑,一次成型,严格实施,确保了规划的先进性、指导性与严肃性。同时,按照“年年出精品、处处有亮点”的要求,每年都实施一批道路、桥梁等基础设施项目,以及体育场馆、文化广场、艺术中心等功能性项目,逐步建成了集健身、休、文化、展览、商业等多种功能于一体的市民文化广场,占地1.2万平米、全国县级市最先进的公共图书馆之一的昆山图书馆,占地1.6万平米、集中展示昆山经济社会发展成果的昆山科博馆,总面积50平方公里、现已位居中国10大最佳服务外包园区之一的花桥国际商务城特色建筑群等诸多城市亮点,目前全市城市化率已达到74%。在城市管理经营方面,昆山市坚持以“民生城管”的昆山城管品牌为抓手,把所有镇作为一级执行部门纳入数字城管范围,实行定点、定路段、定责任的分片包干责任制,在全国率先实现了一级指挥全覆盖。昆山市城管局每周都会确定一个重点整治的城市环境问题,集中力量予以解决,有力地保障了城市环境面貌整洁美化。同时,坚持把能推向市场的城市公用事业和基础设施全部推向市场,通过出售道路、桥梁、路灯等设施的冠名权、广告位、使用权等方式,达到以城养城、以设施养设施的目的。比如,正在推行的公共自行车服务项目,即由企业投资管理运营,政府花钱买服务,极大地方便了市民短途出行;即将建设的投资120亿元的市内高架桥项目,政府采用BT模式,由企业投资建设,政府根据回购协议分期支付建设资金,到期后投资人将高架桥移交政府。
一、树立事业心,增强责任心。 教书是手段,育人是目的。因此,教师在任何时候都不能忘记,自己不单单是为教书而教书的“教书匠”,而应是一个教育家,是人类灵魂的工程师。“以情育人,热爱学生;以言导行,诲人不倦;以才育人,亲切关心;以身示范,尊重信任”。热爱学生是教师职业道德的根本。教师对学生的爱,即是敬业精神的核心,又是教师高尚品德的自我表现,既是育人的目的,又是教师教书这个职业的具体表现。
一、树立事业心,增强责任心。 教书是手段,育人是目的。因此,教师在任何时候都不能忘记,自己不单单是为教书而教书的“教书匠”,而应是一个教育家,是人类灵魂的工程师。“以情育人,热爱学生;以言导行,诲人不倦;以才育人,亲切关心;以身示范,尊重信任”。热爱学生是教师职业道德的根本。教师对学生的爱,即是敬业精神的核心,又是教师高尚品德的自我表现,既是育人的目的,又是教师教书这个职业的具体表现。
活动内容:教师首先让学生回顾学过的三类事件,接着让学生抛掷一枚均匀的硬币,硬币落下后,会出现正面朝上、正面朝下两种情况,你认为正面朝上和正面朝下的可能性相同吗?(让学生体验数学来源于生活)。活动目的:使学生回顾学过的三类事件,并由掷硬币游戏培养学生猜测游戏结果的能力,并从中初步体会猜测事件可能性。让学生体会猜测结果,这是很重要的一步,我们所学到的很多知识,都是先猜测,再经过多次的试验得出来的。而且由此引出猜测是需通过大量的实验来验证。这就是我们本节课要来研究的问题(自然引出课题)。
这是本节课的重点。让同学们将∠aob对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开,请同学们观察并思考:后折叠的二条折痕的交点在什么地方?这两条折痕与角的两边有什么位置关系?这两条折痕在数量上有什么关系?这时有的同学会说:“角的平分线上的点到角的两边的距离相等”.即得到了角平分线的性质定理的猜想。接着我会让同学们理论证明,并转化为符号语言,注意分清题设和结论。有的同学会用全等三角形的判定定理aas证明,从而证明了猜想得到了角平分线的性质定理。